
CashScript: A high-level language
for Bitcoin Cash Script

Rosco Kalis
rosco.kalis@student.uva.nl

rosco@bitcoin.com

July 31, 2019, 60 pages

Research supervisor: Adam Belloum, a.s.z.belloum@uva.nl

Industry supervisor: Gabriel Cardona, gabriel@bitcoin.com

Host organisation: Bitcoin.com, https://bitcoin.com

Universiteit van Amsterdam
Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Master Software Engineering

http://www.software-engineering-amsterdam.nl

mailto:rosco.kalis@student.uva.nl
mailto:rosco@bitcoin.com
mailto:a.s.z.belloum@uva.nl
mailto:gabriel@bitcoin.com
https://bitcoin.com
http://www.software-engineering-amsterdam.nl

Abstract

In the past years blockchain technology has seen a lot of interest, and especially smart contracts have
risen in popularity. The biggest smart contract platform is Ethereum, but platforms like Bitcoin (BTC)
and Bitcoin Cash (BCH) have support for simple smart contracts as well. Smart contracts in Bitcoin are
written using a stack based assembly-like language called Script. Using Script is difficult and error-prone,
like writing in Assembly. Some high-level languages exist for Script, most notably Ivy and Spedn. Ivy has
better integration capabilities, while Spedn has more functionality. We design and implement CashScript
to achieve Spedn’s functionality while offering superior integration capabilities. We furthermore take
inspiration from Ethereum’s workflow to appeal to this body of developers. We evaluate CashScript by
asking six participants to implement and integrate specific contracts. From this evaluation we conclude
that CashScript is easier to integrate and less error-prone than the related work, although less efficient
in terms of executable size. We also conclude that the CashScript language is syntactically similar to
Solidity, but the workflow as a whole needs additional work to be familiar to Ethereum developers.

1

Contents

1 Introduction 6
1.1 Research questions . 6
1.2 Contribution . 7
1.3 Outline . 7

2 Background 8
2.1 Bitcoin . 8

2.1.1 Blockchain . 8
2.1.2 BTC & BCH . 9
2.1.3 Bitcoin transactions . 10
2.1.4 Bitcoin Script . 11

2.2 Compilers . 13

3 Related work 14
3.1 Ivy . 14
3.2 BALZaC . 15
3.3 Spedn . 15
3.4 BitAuth Script . 16
3.5 Summary . 16

4 A high-level language for Bitcoin Cash Script 18
4.1 Language design goals . 18
4.2 Bitcoin Script limitations . 19
4.3 Language specification . 19

4.3.1 Control structures . 19
4.3.2 Types . 19
4.3.3 Type casting . 21
4.3.4 Built-in functions . 21
4.3.5 Global variables . 22
4.3.6 Operators . 22

4.4 Artifacts . 22
4.4.1 Artifact specification . 23

4.5 Extensions . 23

5 A compiler for CashScript 25
5.1 Compiler implementation . 25

5.1.1 Used tools . 25
5.1.2 Lexical & syntax analysis . 26
5.1.3 Semantic analysis . 26
5.1.4 Code generation . 27
5.1.5 Possible optimisations . 28
5.1.6 Test suite . 29

5.2 Command line tool . 29
5.3 JavaScript SDK implementation . 30

5.3.1 Contract . 30
5.3.2 Instance . 30
5.3.3 Transaction . 31

2

CONTENTS

6 Evaluation 32
6.1 Considered languages . 32
6.2 Metrics . 32
6.3 Setup & methods . 33

6.3.1 Contract implementation . 33
6.3.2 Contract integration . 33
6.3.3 Similarity to Ethereum’s workflow . 34

6.4 Participants . 34

7 Results 35
7.1 Overview of participants . 35
7.2 Contract implementation . 35
7.3 Contract integration . 37
7.4 Similarity to Ethereum’s workflow . 38

8 Discussion 39
8.1 Contract implementation . 39
8.2 Contract integration . 40
8.3 Similarity to Ethereum’s workflow . 40
8.4 Threats to validity . 41
8.5 Conclusions . 41
8.6 Recommendations for further research . 41

References 43

Acronyms 46

Appendix A Code repository 47

Appendix B CashScript grammar 48

Appendix C Evaluation Assignment 51
C.1 Contract implementation . 51

C.1.1 Specification . 51
C.1.2 Documentation links . 51
C.1.3 Setup . 52
C.1.4 Reference Implementations . 53

C.2 Contract Integration . 54
C.2.1 Participants & data . 54
C.2.2 Repository structure & setup . 54
C.2.3 Specification . 55
C.2.4 Documentation links . 55

Appendix D Literature study on programming language comparison 56
D.1 Programming language comparison studies . 56

D.1.1 Henderson & Zorn (1994) [35] . 56
D.1.2 Prechelt (2000) [36] . 56
D.1.3 Mannila & De Raadt (2006) [37] . 56
D.1.4 Ebcioglu et al. (2006) [38] . 57
D.1.5 Fourment & Gillings (2008), [39] . 57
D.1.6 Bissiyandé et al. (2013) [40] . 57
D.1.7 Nanz et al. (2013) [41] . 57
D.1.8 Aruoba & Fernandez-Villaverde (2015) [42] . 57
D.1.9 Nanz & Furia (2015) [43] . 57

D.2 Applicability to Bitcoin Script languages . 58
D.2.1 Implementation-based metrics . 58
D.2.2 Static metrics . 58

3

List of Figures

2.1 Block contents and linking. 8
2.2 The BTC-BCH hard fork. 9
2.3 DAG of UTXOs. 10
2.4 Transaction with a change output. 11
2.5 Address generation from public key. 12
2.6 Pay-to-Script-Hash. 12

3.1 An example of an Ivy contract. 14
3.2 An example of a BALZaC transaction specification. 15
3.3 An example of a Spedn contract. 16
3.4 An example of a BitAuth Script template. 16

4

List of Tables

3.1 Overview of high-level Bitcoin Script languages. 17

4.1 Overview of typecasting. 21
4.2 Overview of operators with their precedence. 22

7.1 Overview of evaluation participants and their experience levels. 35
7.2 Results of the contract implementation in Bitcoin Script. 36
7.3 Results of the contract implementation in Spedn. 36
7.4 Results of the contract implementation in CashScript. 37
7.5 Results of the contract integration. 37
7.6 Results on similarity between the workflows of CashScript and Ethereum. 38

D.1 Overview of the quality and contents of the studies. 59
D.2 Overview of the metrics used in implementation evaluations. 60
D.3 Overview of the language features that were compared that are not based on implemen-

tations. Only features that occur in more than one paper are included. 60

5

Chapter 1

Introduction

In the past years blockchain technology has seen a lot of interest. The developer community in the
blockchain space is steadily growing and has doubled in the past two years [1]. Developers are coming
up with novel uses of blockchain using so-called smart contracts. The biggest smart contract platform on
the market is Ethereum, but other platforms like Bitcoin (BTC) and Bitcoin Cash (BCH) have support
for simple smart contracts as well.

Smart contracts in Bitcoin are written using a stack-based assembly-like language called Script, or
Bitcoin Script to avoid ambiguity. At the moment, complex uses of Script are not very widespread, as
it can be difficult and error-prone to write it by hand. In general purpose programming, there is a wide
range of high-level languages that can be used in place of low-level bytecode. This kind of ecosystem is
lacking in the case of Bitcoin Script.

A few implementations of high-level languages do exist for Bitcoin Script. The most feature-complete
ones are Ivy [2] and Spedn [3]. Ivy is created for BTC, while Spedn is created for BCH. Ivy’s functionality
is limited to signature, time, and equality checks [2], whereas Spedn has support for all functionality
that Bitcoin Script allows [3]. Ivy can be integrated into JavaScript projects through their Node Package
Manager (NPM) package [2], while Spedn is only available as a command line tool that compiles into
Bitcoin Script [3].

Although a high-level language makes it easier to write these scripts, it is still not trivial to integrate
the compiled Bitcoin Script into applications. This is where Ethereum stands head and shoulders above
Bitcoin, as smart contracts in Ethereum enjoy high levels of abstraction in both writing and usage.
Several Ethereum Software Development Kits (SDKs) exist for different general purpose programming
languages, such as web3js for JavaScript [4]. These SDKs make it possible to call smart contract functions
as if they were regular functions native to the general purpose language.

This is why we create CashScript, a new high-level Bitcoin Script language and SDK that offers a sim-
ilar workflow to Ethereum’s Solidity language and web3js SDK. Ethereum’s smart contract capabilities
are far more advanced than Bitcoin’s [5, 6], so this project is not attempting to replicate Ethereum-like
functionality, but rather its workflow. This additionally allows developers from the Ethereum community
to get involved with BCH more easily and vice-versa, which can improve collaboration.

CashScript sets itself apart from the existing Bitcoin Script languages by combining the full function-
ality that Spedn offers, with being easily integrated into JavaScript applications like Ivy. The language
furthermore takes inspiration from Ethereum’s Solidity and web3js. This creates more advanced inte-
gration capabilities than Ivy, and allows developers to cross over between Ethereum and BCH.

1.1 Research questions

To conduct our research we formulate the following research questions:

Can we create a high-level language and SDK for Bitcoin Script
that has the same extent of functionality as the existing work but
is easier to integrate into JavaScript applications?

(1)

We create a language and SDK that has the same extent of functionality that Spedn and the other
related work offers. In addition we create an SDK that can be used to seamlessly integrate our language
into JavaScript applications.

6

CHAPTER 1. INTRODUCTION

Can we create a high-level language and SDK for Bitcoin Script
that offers a similar workflow to Ethereum?

(2)

We research the syntax of the Solidity language, and we look at the limitations of Bitcoin Script. We
keep these limitations in mind and replicate the concepts in Solidity that can be transferred. We then
create an SDK that offers a similar user experience to Ethereum’s biggest JavaScript libraries - web3js
and Truffle. This is done by wrapping CashScript contracts in JavaScript objects, allowing users to call
their functions as if they were regular JavaScript functions.

1.2 Contribution

The main contribution of this work is a high-level language and SDK for Bitcoin Script. This work
sets itself apart by combining the extent of functionality of Spedn with significantly better integration
capabilities, offering a similar workflow to Ethereum.

1.3 Outline

Chapter 2 provides the required background information on Bitcoin and compiler construction to be
able to understand the thesis. Chapter 3 contains an overview of the related Bitcoin Script languages.
Chapter 4 discusses the design and specification of the CashScript language. Chapter 5 discusses the
implementation of the compiler of this high-level language and the related JavaScript SDK. Chapter 6
discusses the language’s evaluation. Chapter 7 presents the results of this evaluation. Chapter 8 discusses
the implications of the results, and extracts the main findings of the research.

7

Chapter 2

Background

2.1 Bitcoin

Bitcoin is a peer-to-peer electronic cash system first proposed in 2008 by the pseudonymous Satoshi
Nakamoto. Bitcoin uses a blockchain to distribute its ledger over a network of independent nodes so that
there is no single point of failure, and no central control that might be compromised. It uses a consensus
algorithm called Proof-of-Work that allows these independent nodes to approve correct transactions and
reject malicious ones [7].

2.1.1 Blockchain

The blockchain is a data structure that is distributed over a number of independent nodes. It derives
its name from the chain of so-called blocks that it uses to store its data [8]. Block headers include the
root of a Merkle tree – a special kind of tree that allows quick validation of data through hashes [9].
This Merkle tree is used to store the actual data inside these blocks. To make the chain resistant to
manipulation, block headers also include a timestamp and a hash of the previous block [8]. The way
these blocks are structured and linked together can be seen in figure 2.1.

Figure 2.1: Block contents and linking.
Downloaded from [8]

The Bitcoin blockchain and many other public blockchains use a consensus algorithm called Proof-
of-Work (PoW) [9]. This algorithm works by attaching a nonce to every block header, and changing
this nonce until the hash of the block matches a certain prefix. This process is called mining, and is
attempted by many nodes at the same time, until one of them has found a correct solution. This process
of mining is very expensive, but other nodes can verify the solution very quickly [7].

Mining is also the process by which new Bitcoins are introduced to the total monetary supply. Miners
validate transactions and secure the network for which they are paid new coins – the block reward – in a
special transaction called a Coinbase transaction. This attaches a financial risk on incorrectly validating
transactions through the high costs of the mining process. At the same time it attaches a financial reward
on correctly validating transactions through the block reward. This process ensures that the mutually
distrusting network can work together to validate transactions [7].

8

CHAPTER 2. BACKGROUND

2.1.2 BTC & BCH

In 2017, Bitcoin faced big scalability issues, as the network was unable to process the amount of trans-
actions that were coming in. This caused very long confirmation times and very high transaction fees 1.
By that time, a debate on tackling these expected issues had been going on for several years. In those
years it had not been possible to reach a consensus on this, but the urgency demanded that a solution
had to be found, lest the high fees and transaction times would prevent users to adopt the technology.

One of the proposed solutions was to increase the maximum blocksize to accommodate more trans-
actions per second and reduce the transaction fees. The blocksize limit at the time was set to 1 MB
maximum as it had been since the early days of Bitcoin 2. However, computers have become faster and
more efficient, so they should be able to handle the higher block sizes [10].

Not everyone agreed with this solution, as a number of people argued this would increase node oper-
ating costs, which would decrease decentralisation. They valued node operating costs over the increased
transaction throughput and decreased costs that raising the blocksize limit would bring. Instead they
wanted to implement an algorithm called SegWit, which separates a transaction’s unlocking signature,
or witness from the rest of the transaction data. One of the effects of SegWit is that it allows blocks
to hold more transactions without technically raising the blocksize limit, although its main goal is to
counter transaction malleability 3.

Ultimately, the different camps were unable to reach a compromise on the solution, which caused the
network to execute a so-called hard fork, or split, which resulted in two separate chains [11]. Of the two
resulting chains, one has kept the original Bitcoin name (BTC), while the other was branded Bitcoin
Cash (BCH). This hard fork can be seen in figure 2.2.

Figure 2.2: The BTC-BCH hard fork.
Downloaded from Bitcoin.com

BTC has since then partially adopted SegWit and plans to use a second layer solution called the
Lightning Network as its primary means for scaling. This solution is still in its early stages, and can
not be reliably used yet. BCH has since then raised the blocksize limit to 32 MB, and has implemented
several other features to improve scalability and enhance functionality such as Canonical Transaction
Ordering (CTOR) and Schnorr signatures.

BTC has so far done better in terms of price and has seen more usage 4 5, although its scaling has not
improved by much since the hard fork 6. On the other hand, BCH’s price is a lot lower and it gets used
less, but it has the possibility to scale to many more transactions while keeping lower fees and achieving

1https://bitinfocharts.com/comparison/transactionfees-btc-bch.html#log
2https://github.com/bitcoin/bitcoin/commit/a30b56ebe76ffff9f9cc8a6667186179413c6349
3https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
4https://bitinfocharts.com/comparison/transactions-btc-bch.html#log
5https://bitinfocharts.com/comparison/price-btc-bch.html#log
6https://bitinfocharts.com/comparison/size-btc-bch.html#log

9

https://www.bitcoin.com/info/bitcoin-cash-is-bitcoin
https://bitinfocharts.com/comparison/transactionfees-btc-bch.html#log
https://github.com/bitcoin/bitcoin/commit/a30b56ebe76ffff9f9cc8a6667186179413c6349
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://bitinfocharts.com/comparison/transactions-btc-bch.html#log
https://bitinfocharts.com/comparison/price-btc-bch.html#log
https://bitinfocharts.com/comparison/size-btc-bch.html#log

CHAPTER 2. BACKGROUND

higher throughput. This has been demonstrated in several stress tests that have been executed on the
BCH network in the past year 7 8.

For brevity, the term Bitcoin is used to refer to both BTC and BCH in the remainder of this work.
Whenever it is necessary to make the distinction, we refer to the two different chains as BTC and BCH.

2.1.3 Bitcoin transactions

While Bitcoin’s transaction model is quite complex, it is easy to use Bitcoin without knowing how
transactions work technically. Users can use their Bitcoin wallet to transact Bitcoin with other Bitcoin
users, while their wallet application handles all underlying abstractions. In order to explore Bitcoin’s
Script language, however, it is necessary to understand how Bitcoin transactions work under the hood.

Bitcoin transactions use so called transaction outputs, which are chunks of Bitcoin currency. Whenever
such an output is available and spendable, it is called an Unspent Transaction Output (UTXO). Every
Bitcoin full node keeps track of all existing UTXOs which is called the UTXO set. A user’s Bitcoin
balance is simply the sum of all UTXOs in the UTXO set that can be spent by the user’s wallet. There
are blockchain indexing services that make this UTXO set easily accessible, so that wallets don’t have
to crawl the blockchain for UTXOs themselves [5].

UTXOs are used as inputs for Bitcoin transactions, and produce new UTXOs as outputs, which can
be consumed by future transactions. Multiple UTXOs can be used as inputs for a single transaction, and
multiple UTXOs can be produced by a single transaction. Effectively, chunks of Bitcoin value move in a
Directed Acyclic Graph (DAG) of transactions consuming and producing UTXOs. An exception to this
is the coinbase transaction, which is the first transaction in every block and has no UTXOs as inputs.
Instead this coinbase transaction creates a new UTXO that is spendable by the miner as a reward for
mining the block [5]. An excerpt of such a DAG can be seen in figure 2.3

Figure 2.3: DAG of UTXOs.
Downloaded from [12]

Transaction outputs can have an arbitrary integer value denominated in the unit satoshi, which
represents 1/108 of a Bitcoin. The output is indivisible after it is created, which means that any UTXO
needs to be spent in its entirety inside a transaction. So whenever a user wishes to use a UTXO worth
1000 satoshis to send 100 satoshis to someone, their transaction needs to pay 100 satoshis to the other
party, and pay 900 in change back to their own wallet. Realistically, part of the input funds would be
reserved for transaction fees as well [5]. An example of this kind of change transaction can be seen in
figure 2.4.

7https://cointelegraph.com/news/bitcoin-cash-stress-test-results-21-million-transactions-cause-no-surge-in-fees
8https://news.bitcoin.com/new-bitcoin-cash-stress-test-sees-700000-transactions-in-one-day/

10

https://cointelegraph.com/news/bitcoin-cash-stress-test-results-21-million-transactions-cause-no-surge-in-fees
https://news.bitcoin.com/new-bitcoin-cash-stress-test-sees-700000-transactions-in-one-day/

CHAPTER 2. BACKGROUND

Figure 2.4: Transaction with a change output.
Downloaded from https://medium.com/cybermiles/diving-into-ethereums-world-state-c893102030ed

Now that we understand the building blocks and basic structure of Bitcoin transactions, we can
study how Bitcoin makes sure these transactions can only be spent by the ”owner” of the UTXO. When
a transaction is created, a so-called locking script is included with the output. This script specifies the
conditions that must be met to spend the output [5].

To spend this output, an unlocking script is provided, which satisfies the conditions specified in the
locking script, and allows the output to be spent. The spend authorisation is considered valid if and
only if the unlocking and locking scripts are able to execute completely, and the resulting value is TRUE
(non-empty byte sequence). All Bitcoin validating nodes execute the unlocking and locking scripts to
validate that the unlocking script actually satisfies the locking script [5].

2.1.4 Bitcoin Script

Locking and unlocking scripts are written using Bitcoin’s transaction scripting language, creatively named
Script. To avoid ambiguity, it can also be referred to as Bitcoin Script. Bitcoin Script is a stack based
assembly-like language that is executed from left to right. It is designed to be limited in scope, and is
intentionally not Turing complete, as its main use is the validation of programmable money, not general
purpose computing [5].

Bitcoin Script is stateless, meaning it only uses the information contained within the script itself.
This statelessness means that a Script can be deterministically validated on any machine [5]. This gives
increased performance and predictability, although it does limit the usefulness of the scripting language
[13]. In contrast, smart contracts on Ethereum have a persistent state that can be changed with smart
contract interactions. A simple example is the ERC20 token standard 9, which allows anyone to encode
a token inside a smart contract. The contract keeps track of the balances of all token holders, and token
holders can use the smart contract to transact with other users.

Such functionality is impossible using only Bitcoin Script, as Bitcoin Script can not keep track of
these balances and act accordingly. But there are solutions in development that work around this by
creating hybrid solutions, such as the Simple Ledger Protocol (SLP) token standard on BCH.

Theoretically, any kind of locking / unlocking script can be used in Bitcoin transactions. However,
only standard scripts are accepted by mainnet miners for security reasons [12]. The types of scripts that
are considered standard by the Bitcoin mining software are Pay-to-Public-Key (P2PK), Pay-to-Public-
Key-Hash (P2PKH), Pay-to-Script-Hash (P2SH), Pay-to-Multi-Signature (P2MS) and NULLDATA. Of
these, only P2PKH, NULLDATA and P2SH are actively used, so these are the ones we elaborate on.

The most simple script type is P2PK. In this script type, the locking script contains a public key
with a CHECKSIG opcode. The unlocking script provides a signature corresponding to the public key.
The signature and public key are checked with this CHECKSIG opcode, and the UTXO is spendable if
the signature and public key match [14].

9https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

11

https://medium.com/cybermiles/diving-into-ethereums-world-state-c893102030ed
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md

CHAPTER 2. BACKGROUND

Figure 2.5: Address generation from public key.
Downloaded from [14]

To make it more convenient for users to transact Bitcoin, the P2PKH type was developed, where
the locking script contains a public key hash instead of the public key itself. The unlocking script then
provides a corresponding public key and signature. The UTXO is spendable if a hash of the provided
public key matches the hash in the locking script and the provided public key and signature match each
other. A public key hash is translatable to a Bitcoin address (figure 2.5), which is a lot shorter than a
full public key. This allows users to share their addresses with each other instead of the much longer
public key. Almost all regular Bitcoin transactions use P2PKH [5, 14].

The NULLDATA script type is used to embed data on the blockchain. Using the OP RETURN
opcode inside a locking script results in a provably unspendable transaction output, which does not need
to be stored in the UTXO set [5]. As a result, any Bitcoin amount that is locked inside this output is lost
forever. OP RETURN can be used to store any data on the blockchain and enables simple use-cases
such as Proof of Existence 10 or Memo.cash 11, but can also be used for more sophisticated on-chain
protocols, such as SLP 12, a protocol that allows sub-currencies, or tokens, to be created and transacted
on the BCH chain [15].

To enable the creation of other, more complex locking scripts, P2SH can be used. The locking script
of a P2SH output contains the hash of a custom, more complex script, called the redeem script. To spend
this output, the user has to provide the original redeem script, as well as the unlocking script to this
redeem script. The execution of a P2SH script is a bit different than P2PKH, in that it is executed in
two parts. First the redeem script is hashed and checked against the hash in the locking script. If they
match, the unlocking script is used to unlock the redeem script as if the redeem script was the initial
locking script (figure 2.6) [5, 14].

Figure 2.6: Pay-to-Script-Hash.
Downloaded from https://medium.com/codechain/renewed-pay-to-script-hash-60df881e1613

10https://proofofexistence.com/
11https://memo.cash/
12https://simpleledger.cash/

12

https://medium.com/codechain/renewed-pay-to-script-hash-60df881e1613
https://proofofexistence.com/
https://memo.cash/
https://simpleledger.cash/

CHAPTER 2. BACKGROUND

At first it may seem unnecessarily complicated to use P2SH compared to using the redeem script as
a regular locking script. However, P2SH offers several benefits. It shifts the burden of constructing the
locking script from the sender to the recipient. Without P2SH, every sender would have to know the
redeem script in order to send Bitcoin to this script. With P2SH the sender only needs to know the
hash of this script, while the recipient needs to hold the full script. The script hash can be transformed
to a regular Bitcoin address through the process outlined in figure 2.5. This means a sender can send
Bitcoin to this script like sending Bitcoin to a regular address. It also shifts the burden of script storage
from the output – which is stored on the blockchain and in the UTXO set – to the input – which is only
stored on the blockchain. This increases overall performance, as it keeps the UTXO set smaller [5].

While Script is not Turing complete and quite limited in scope, there are interesting ”smart contracts”
that can be encoded into these P2SH redeem scripts. One of the common examples is an m-of-n multi-
signature wallet, where there are n owners to a wallet, and at least m signatures are needed before an
output can be spent [5]. Another example is a hash collision contract, where an output can be spent
by providing a hash collision for some hashing algorithm [14]. BCH is looking to innovate in the Script
area, and it has recently enabled the new OP CHECKDATASIG opcode that enables the use of oracles
[16] and covenants [17–19].

2.2 Compilers

A compiler is a program that can read a program in one language - the source language - and translate
it into an equivalent program in another language - the target language. In the process a compiler also
reports any errors in the source program. A compiler typically goes through several phases phases: lexical
analysis, syntax analysis, semantic analysis, optimisation, and code generation [20]. These compiler
phases are revisited in chapter 5 when the compiler implementation is discussed.

The lexical analyser – or lexer – reads the stream of characters inside the source program, and
groups these characters into meaningful sequences, or tokens. These tokens commonly have the form
(token-name, attribute-value). The token name is an abstract symbol that can be used during the syntax
analysis. The attribute value usually points to an entry in the symbol table for the token, which is used
in the later stages of semantic analysis and code generation [20].

After the lexical analysis, the resulting token stream is passed on to the syntax analyser – or parser.
These tokens are used to create a parse tree, a tree-like intermediate representation that depicts the
grammatical structure of the token stream [20]. This parse tree is usually quite close to the actual
structure of the source code, so it is transformed into an Abstract Syntax Tree (AST), which is a more
abstract representation. During the construction of the trees the parser makes sure that the order of
operations is correctly encoded.

The semantic analyser uses the AST to build up a symbol table that includes all defined symbols
inside the source code. It uses this symbol table to check for semantic consistency, which includes
checking that all variables have been declared before they are used, and that there’s no redefinitions of
variables. Another important part of semantic analysis is type checking, where the compiler checks that
each operator has matching operands. The compiler should throw an error, for example, if a floating
point number is used to index an integer-indexed array. Depending on the language, it might be possible
to perform type coercion, where a type is implicitly casted to a different one, to prevent these errors [20].

At some point in the process, the compiler executes several rounds of optimisation, unless disabled by
the user. Depending on the objective, optimisation can mean different things. Usually the objective of
the optimisation is execution speed, but it can also be the size of the target code or energy consumption
[20]. In the case of Ethereum’s Solidity language for example, compiler optimisation targets a lower gas
usage, meaning that it’s cheaper to execute [21].

The final step of a compiler is always the generation of the target program. The code generator takes
the intermediate representation of the source program and maps it into the target [20]. Depending on the
source language and target language this could have different levels of complexity. The compilation of a
high-level language such as Lua into bytecode that can be executed on the machine is more complicated
than the compilation of a language like TypeScript which compiles into JavaScript, a language on a
similar level of abstraction.

13

Chapter 3

Related work

3.1 Ivy

Ivy is the oldest of the reviewed languages, as it was released in December of 2017 during the 2017
cryptocurrency bull-run [22]. It was created for BTC, without explicit support for BCH. Ivy is written
in TypeScript and provides a JavaScript SDK for easy integration with other projects in the JavaScript
ecosystem. The SDK makes it possible to compile, instantiate, and use the contracts written with Ivy
[2]. The syntax of the language is similar to TypeScript, making it familiar to many web developers. An
example of the language can be seen in figure 3.1.

Ivy’s functionality as a language is very limited, as there is a lack of variable definitions and assign-
ments. There is also a lack of most expressions, such as arithmetic and comparison operators other than
equality / inequality. This makes Ivy very safe and very simple since many error-prone operations are
not allowed. At the same time, it limits the usefulness of the language, as it only supports signature,
time checks, and equality checks [2].

The authors of the language deem it too immature to be used in production, and the JavaScript
SDK doesn’t even allow users to create real transactions – either mainnet or testnet [2]. At the same
time the project has seen no significant improvements since February of 2018 1, so it appears that these
immaturities will not be resolved.

Figure 3.1: An example of an Ivy contract.
Extracted from [2]

1https://github.com/ivy-lang/ivy-bitcoin/commits

14

CHAPTER 3. RELATED WORK

3.2 BALZaC

The second high-level interface that is focused on BTC is BALZaC, which is not necessarily a high-
level language that compiles to Bitcoin Script, but instead a language to specify Bitcoin transactions in
general [23]. This can be valuable as it removes the step of integrating the compiler output into a Bitcoin
transaction, since the output already is a Bitcoin transaction. However, this integration step could also
be done with an SDK as is the case with Ivy.

BALZaC is the only project that is academic rather than industry, and the language is based on the
authors’ paper A formal model of Bitcoin transactions [24]. This gives the project scientific backing,
but as a result the look and feel of the language are also very formal and academic. An example of the
language can be seen in figure 3.2.

The language allows you to specify inputs, which are unlock arguments, and outputs, which is the
script that locks the UTXO. The scripting language used for this is a functional language that uses
a simple expression syntax allowing for arithmetic and comparison operations, as well as time-based
operations and signature checks [23]. This is more functionality than Ivy supports, but still lacks features
such as variable assignment and straightforward conditional execution.

The only way to use the language is through its Integrated Development Environment (IDE) 2,
which means that integration possibilities into Bitcoin applications and libraries are impossible without
manual work. Because of this the language is mainly usable as a theoretical exercise and a way of
formally specifying Bitcoin transactions, but not to actually be used in applications.

Figure 3.2: An example of a BALZaC transaction specification.
Extracted from [23]

3.3 Spedn

Spedn is a newer smart contract language that has been created specifically for BCH and it was first
released in October of 2018 [3]. Since then it has been kept up to date, and it still experiences regular
commits from its author 3. This active development and constant improvement signal a higher level of
maintenance than Ivy.

The documentation states that the language has a familiar C-like syntax, and it stays quite close
to the underlying target code – the Bitcoin Script [3]. This suggests that the language is accessible
to developers familiar with C, which is definitely a sizeable part of the global developer community.
However, many modern applications are written with JavaScript and web technologies 4. An example of
the language can be seen in figure 3.3.

Spedn is written in Haskell, which lends itself very well for the construction of compilers as it has
excellent pattern matching support. However, Haskell is not a very popular language, so there are not
many developers familiar with Haskell tooling. At the start of this project, the Spedn Command Line
Interface (CLI) could only be installed by downloading the source and building it using Haskell tools.
Since then the author has updated the language, and it is currently available as a global NPM package,
which largely mitigates the drawbacks of using Haskell.

The output of Spedn compilation is Bitcoin Script. To send money to this script, an address needs to
be generated from it. And to spend money, there are many manual steps due to a lack of SDK support.
While the language does makes Bitcoin Script more accessible, intricate knowledge of Bitcoin and Bitcoin
Script is still required to use these Spedn contracts.

2https://blockchain.unica.it/balzac/
3https://bitbucket.org/o-studio/spedn
4https://github.blog/2018-11-15-state-of-the-octoverse-top-programming-languages/

15

https://blockchain.unica.it/balzac/

CHAPTER 3. RELATED WORK

Figure 3.3: An example of a Spedn contract.
Extracted from [3]

3.4 BitAuth Script

BitAuth Script is the newest kid on the block – released early 2019 – and also the one with the lowest
level of abstraction. Rather than defining a new syntax, BitAuth Script can be seen as a templating
engine for Bitcoin Script. By surrounding a statement with brackets, this statement can be used to push
data into the script, which allows the users to add variables to their Script that can be filled in at a later
time. An example of the language can be seen in figure 3.4.

BitAuth Script was created as part of the larger BitAuth IDE, which in turn is a part of a larger
BitAuth project. This means that there are currently no ways to integrate this language into any web
or other applications. However, this project is still under very active development, so this is likely to
change in the near future.

Figure 3.4: An example of a BitAuth Script template.
Downloaded from [25]

3.5 Summary

Spedn has all functionality we expect from a high-level Bitcoin Script language, but it lacks the integration
capabilities that Ivy offers. Ivy lacks the scope of Spedn’s functionality, and is targeted at BTC rather
than BCH. Besides this, the project has been abandoned for over a year, and is unlikely to be usable at
any point in the future. BALZaC is an interesting project, but is too academic to be practically used
in industry, and lacks integration possibilities. BitAuth Script looks like a great project, but it lacks
maturity, and it is still too close to Bitcoin Script to be classified as a high-level language.

These languages all clearly have different goals and different audiences in mind. Spedn aims to be
familiar for C developers, BALZaC is geared towards academics, Ivy clearly targets web developers, and
BitAuth Script mainly provides a better way to write Bitcoin Script for those that are already familiar
with it. One thing these projects neglect is that there is a large community of blockchain developers
that already work with Ethereum. Allowing these developers to cross over to BCH can lead to improved
collaboration between the communities.

With CashScript we combine Spedn’s functionality with Ivy’s integration capabilities. We further-
more focus on creating a syntax that is familiar to Ethereum developers and creating an SDK with a
similar workflow to Ethereum’s. A comparison between the related work and our proposed language
CashScript can be seen in figure 3.1.

16

CHAPTER 3. RELATED WORK

Table 3.1: Overview of high-level Bitcoin Script languages.

B
it

co
in

fo
rk

O
p
co

de
su

pp
or

t

Im
pl

em
en

ta
ti

on
la

ng
ua

ge

T
oo

lin
g

Sy
nt

ax
si

m
ila

ri
ty

M
ai

nt
en

an
ce

L
ic

en
se

Ivy 5 BTC Limited TypeScript JavaScript SDK TypeScript Abandoned MIT

BALZaC 6 BTC Limited Java Online IDE N/A Active N/A

Spedn 7 BCH Full Haskell CLI C Active MIT

BitAuth 8 BCH Full TypeScript Online IDE Bitcoin Script Active MIT

CashScript 9 BCH Full TypeScript CLI & JavaScript SDK Solidity Active MIT

5https://github.com/ivy-lang/ivy-bitcoin
6https://github.com/balzac-lang/balzac
7https://bitbucket.org/o-studio/spedn/
8https://github.com/bitauth/bitauth-ide
9https://github.com/Bitcoin-com/cashscript

17

https://github.com/ivy-lang/ivy-bitcoin
https://github.com/balzac-lang/balzac
https://bitbucket.org/o-studio/spedn/
https://github.com/bitauth/bitauth-ide
https://github.com/Bitcoin-com/cashscript

Chapter 4

A high-level language for Bitcoin
Cash Script

4.1 Language design goals

Something that should be avoided in language design is the violation of expectations. What this means
is that we should not take familiar constructs and have them behave in a different way than the norm.
An example of this is the usage of the ’%’ sign as a comment in languages such as Turing or LaTeX,
or the automatic list sorting of the ABC language. This also means it’s detrimental to use unexpected
keywords for familiar tasks, such as using the keyword cond instead of if, or using x as the multiplication
operator rather than * [26].

This is reinforced by the designer of the D programming language who advocates for using ”tried and
true” patterns and constructs as this enables faster learning and easier usage of the language. He also
states that people tend to optimise for minimising keystrokes, which is detrimental, as the time spent
actually typing is never the bottleneck of software development. Additionally, the written code needs to
be readable for the author and for the people they work with, and minimising keystrokes can affect the
readability negatively [27].

According to GitHub, the most popular programming language is JavaScript 1. This reinforces our
belief that it is important to have a Bitcoin Script language that is easily integrated with JavaScript
projects. In the smart contract development ecosystem, Solidity is the most used language [28], and is
used to write smart contracts for the Ethereum blockchain and compatible chains. We want to focus on
making CashScript familiar for Solidity developers to leverage these existing developers.

Because Bitcoin Script potentially controls large amounts of actual funds, safety is a very important
feature of the language. One way of defining programming language safety is measuring how early errors
can be detected [29]. This is doubly important for Bitcoin Script as it is not possible to change any errors
in these contracts as soon as they are being used. Toby Ho lists several important classes of errors in
the context of safety, namely null pointers, array index out of bounds, type errors, or incorrect function
call arguments [29]. These safety issues need to be addressed in the language design.

The existing languages share this focus on safety. Ivy adds safety by disabling a large chunk of
functionality that could be expected from a programming language [2]. Spedn opts to keep most of
this functionality, but has a very elaborate type system with many different types and very strict type
checking [3]. With CashScript, we do not want to limit functionality in the way Ivy does, but at the same
time we believe that the amount of types that Spedn uses ends up being detrimental to productivity.
We want to hold on to the safety features that this type system provides, without being a burden on the
user.

This leads to the following concrete design goals.

∙ CashScript should be familiar to Solidity developers

∙ CashScript should not require Bitcoin Script knowledge

∙ CashScript should have strong safety without compromising on usability

1https://octoverse.github.com/projects#languages

18

https://octoverse.github.com/projects#languages

CHAPTER 4. A HIGH-LEVEL LANGUAGE FOR BITCOIN CASH SCRIPT

4.2 Bitcoin Script limitations

Bitcoin Script is intentionally not Turing complete and has several functional limitations that need to
be taken into account when designing a high-level language on top of it. In this section we discuss the
way these limitations affect the design and implementation of CashScript.

The most important limitation is the lack of loop support. This means that most loops are also
impossible to implement in a high-level language, although simple bounded loops could be implemented
and unrolled by the compiler. We do not think this will provide meaningful functionality, and do not
implement these kinds of loops in CashScript. The lack of loops also diminishes the usefulness of arrays
or lists. If lists can not be iterated over, they are basically a convoluted way of storing variables that
might as well be stored in a named variable. This is why we exclude arrays or lists from our language
for now.

Another limitation is in the script size. Bitcoin Scripts have a maximum size of 10000 bytes 2, which
means that transactions above that limit can not be created at all. There is an additional rule that states
the max size of a script element is 520 bytes 3. With P2SH, the redeem script needs to be hashed, for
which it needs to be pushed to the stack in its entirety. This means that the redeem script is effectively
a single script element, and has to conform to this 520 byte limit. Another limitation is on the number
of operations a script may contain, which is set to 201 operations 4. These limitations don’t influence
CashScript’s functionality, but they do place an increased importance on the size of the compiled output.

A final important limitation is the lack of some arithmetic operations. Bitcoin Script has a number
of arithmetic opcodes that were disabled because they caused bugs at the time. These opcodes are still
disabled on the BTC chain, but BCH has made steps to address the issues in these opcodes and re-enable
them 5. However, the OP MUL opcode for multiplication remains disabled for the time being. Simple
multiplications could be unrolled into several additions, but this is not productive, especially considering
the Script size limits. Eventually, it is planned to re-enable the OP MUL opcode, which is why we do
not attempt to implement unrolled multiplication.

4.3 Language specification

In this section we give an overview of the structure of a CashScript file, the available control structures,
types, operators, and built-in functions. In addition to this specification, the full language grammar
of CashScript is included in appendix B in the form of the Another Tool For Language Recognition
(ANTLR) grammar specification that is used to parse CashScript source files.

A CashScript file contains exactly one contract definition. A contract in CashScript is a collection of
functions that can be used to spend the funds that are locked in this contract. These contracts can be
instantiated using the contract’s parameters, and their functions can be called by specifying the correct
function parameters.

4.3.1 Control structures

The only control structures in CashScript are if and else , with loops and return statements left out due
to their incompatibility with the underlying Bitcoin Script. If-else statements follow the usual semantics
known from C or JavaScript. Parentheses can not be omitted for conditionals, but curly braces can
be omitted around single-statement bodies. There is no implicit type conversion from non-Boolean to
Boolean types as there is in C and JavaScript, so if (1) { ... } is not valid CashScript.

4.3.2 Types

We include several types that can be used inside CashScript smart contracts. In the compiled Bitcoin
Script, all these types are represented as generic byte sequences. An exception to this is the integer type,
which is encoded as little-endian minimally encoded byte sequence. The additional types are added for
convenience and type safety, as this allows the compiler to catch potential type errors at compile time
or in the JavaScript SDK.

2https://github.com/Bitcoin-ABC/bitcoin-abc/blob/master/src/script/script.h#L31-L32
3https://github.com/Bitcoin-ABC/bitcoin-abc/blob/master/src/script/script.h#L23
4https://github.com/Bitcoin-ABC/bitcoin-abc/blob/master/src/script/script.h#L26
5https://www.bitcoincash.org/spec/may-2018-reenabled-opcodes.html

19

https://github.com/Bitcoin-ABC/bitcoin-abc/blob/master/src/script/script.h#L31-L32
https://github.com/Bitcoin-ABC/bitcoin-abc/blob/master/src/script/script.h#L23
https://github.com/Bitcoin-ABC/bitcoin-abc/blob/master/src/script/script.h#L26
https://www.bitcoincash.org/spec/may-2018-reenabled-opcodes.html

CHAPTER 4. A HIGH-LEVEL LANGUAGE FOR BITCOIN CASH SCRIPT

Boolean

bool : The possible values are constants true and false.
Operators:

∙ ! (logical negation)

∙ && (logical conjunction, “and”)

∙ || (logical disjunction, “or”)

∙ == (equality)

∙ != (inequality)

The operators || and && don’t apply common short-circuiting rules. This means that in the expression

f(x) || g(y) , g(y) will still be executed even if f(x) evaluates to true.

Integer

int : Signed integer of 32 bit size.
Operators:

∙ Comparisons: <= , < , == , != , >= , > (evaluate to bool)

∙ Arithmetic operators: + , − , unary − , / , ∖% (modulo).

Note the clear lack of the * and ** (exponentation) operators as well as any bitwise operators. While
integer sizes are limited to 32 bits, the output of arithmetic operations can exceed this size. This will not
result in an overflow, but instead the script will fail when using this value in another integer operation.
Division and modulo operations will fail if the right hand side of the expression is zero.

To make integer values more meaningful, we added several numeric units that allow users to represent
either value – satoshis/sats , finney , bits , bitcoin – or time – seconds , minutes , hours , days , weeks

– using the integer type. These units automatically convert the integer to the lowest possible unit (e.g.
14 days == 2 weeks . These numeric units are used to add semantic meaning to the values they represent.

This makes it easier to create timelocks and other time-based contracts.

String

string : ASCII-encoded byte sequence.
Operators:

∙ + (concatenation)

∙ == (equality)

∙ != (inequality)

Members:

∙ length : Number of characters that represent the string.

∙ split (int) : Splits the string at the specified character and returns a tuple with the two resulting
strings.

Bytes

bytes , bytes20 , bytes32 : Byte sequence, optionally bound to 20 or 32 bytes.
Operators: Operators:

∙ + (concatenation)

∙ == (equality)

∙ != (inequality)

Members:

∙ length : Number of bytes in the byte sequence.

∙ split (int) : Splits the byte sequence at the specified byte and returns a tuple with the two resulting
byte sequences.

Pubkey

pubkey : Byte sequence representing a public key.

20

CHAPTER 4. A HIGH-LEVEL LANGUAGE FOR BITCOIN CASH SCRIPT

Operators:

∙ == (equality)

∙ != (inequality)

Sig

sig : Byte sequence representing a transaction signature.
Operators:

∙ == (equality)

∙ != (inequality)

Datasig

datasig : Byte sequence representing a data signature.
Operators:

∙ == (equality)

∙ != (inequality)

Array & Tuple

These types are not assignable, and only have very specific uses within CashScript.
Arrays are only able to be passed into checkMultisig functions using the following syntax:

checkMul t i s i g ([s ig1 , s i g 2] , [pk1 , pk2 , pk3]) ;

Tuples can only arise by using the split member function on a string or a bytes type. Their first
or second element can be accessed through a familiar array indexing syntax:

s t r i n g ques t i on = ”What i s B i t co in Cash ?” ;
s t r i n g answer = ques t i on . s p l i t (15) [0] . s p l i t (8) [1] ;

4.3.3 Type casting

Some types can be implicitly or explicitly casted to each other, as shown in table 4.1.

Table 4.1: Overview of typecasting.

Type Implicitly castable to Explicitly castable to

bool int

int bool, bytes, bytes20, bytes32

string bytes

bytes bytes20, bytes32, int, sig, pubkey

bytes20 bytes32, bytes bytes32, bytes

bytes32 bytes bytes20, bytes

pubkey bytes bytes

sig bytes bytes, datasig

datasig bytes bytes

4.3.4 Built-in functions

∙ require takes a Boolean value and throws an error if it is false.

∙ abs takes an integer value and returns its absolute value.

∙ min takes two integer values and returns the smallest of the two.

∙ max takes two integer values and returns the largest of the two.

∙ within takes an integer and checks if it is within a passed range.

∙ ripemd160 takes a value and returns its ripemd160 hash.

21

CHAPTER 4. A HIGH-LEVEL LANGUAGE FOR BITCOIN CASH SCRIPT

∙ sha1 takes a value and returns its sha1 hash.

∙ sha256 takes a value and returns its sha256 hash.

∙ hash160 takes a value and returns the ripemd160 hash of its sha256 hash.

∙ hash256 takes a value and returns its double sha256 hash.

∙ checkSig takes a transaction signature and a public key, and performs a signature check on them.

∙ checkMultiSig takes an array of transaction signatures and an array of public keys, and performs
a multi-sig check on them.

∙ checkDataSig takes a data signature, a data value and a public key, and performs a data signature
check on them.

4.3.5 Global variables

There are two global variables that give information about the transaction in the context of the contract.
tx.time represents the block number in which the transaction is included, while tx.age represents age
of the transaction output in blocks. These variables can be used in the creation of Hash Time Locked
Contracts (HTLCs) or similar contracts. Due to limitations within the underlying Bitcoin Script, these
global variables can only be used in the following ways:

r e qu i r e (tx . time >= <expres s ion >)
r e qu i r e (tx . age >= <expres s ion >)

4.3.6 Operators

Table 4.2: Overview of operators with their precedence.

Precedence Description Operator

1 Parentheses (<expression>)

2 Type cast <type>(<expression>)

3 Function call <function>(<args...>)

4 Tuple index <tuple>[<index>]

5 Member access <object>.<member>

6 Postfix increment / decrement ++ , −−

7 Unary minus −

7 logical NOT !

8 Division and modulo / , ∖%

9 Addition and subtraction + , −

9 String / bytes concatenation +

10 Numeric comparison < , > , <= , >=

11 Equality and inequality == , !=

12 Logical AND &&

13 Logical OR ||

14 Assignment =

4.4 Artifacts

Ethereum has the concept of the Application Blockchain Interface (ABI) [21]. These ABIs contain all the
information needed to interface with the smart contract as it is deployed on the blockchain [21], hence the
name Application Blockchain Interface. These ABIs are used by libraries that integrate with Ethereum,
such as Truffle [30]. Truffle integrates this ABI into their own format called the Truffle artifact, which
contains a lot of other information, such as the raw bytecode, source code, and deployed addresses [30].

In the case of Bitcoin, there is more information needed to interface with a contract than in the case
of Ethereum. In Ethereum, the contract’s bytecode is stored on the blockchain [31], while with Bitcoin’s

22

CHAPTER 4. A HIGH-LEVEL LANGUAGE FOR BITCOIN CASH SCRIPT

P2SH the bytecode is stored client-side, and needs to be provided when using the contract [5]. This
effectively extends the ABI to need additional fields. With these additional fields added, a Bitcoin ABI
is more similar to a Truffle artifact than an Ethereum ABI. To avoid confusion, we decide to adhere
to most of the Truffle artifact specification and use the name artifact rather than ABI to refer to this
specification.

These artifacts can be used by libraries and SDKs to integrate CashScript contracts, as it includes
all information needed to instantiate and use contracts. The JavaScript SDK is currently the only SDK
that uses these artifacts, but other SDKs could be developed by third parties without the need to re-
implement a compiler, as they only need to integrate the artifact format into their SDK. The actual
compilation can then be done using the command line CashScript compiler.

4.4.1 Artifact specification

i n t e r f a c e A r t i f a c t {
contractName : s t r i n g ; // Contract name
cons t ruc to r Input s : AbiInput [] ; // Arguments r equ i r ed to i n s t a n t i a t e a cont rac t
abi : AbiFunction [] ; // f unc t i on s that can be c a l l e d
bytecode : s t r i n g ; // Compiled Sc r i p t without con s t ruc to r parameters added (in ASM

format)
source : s t r i n g ; // Source code o f the CashScr ipt cont rac t
networks : { // Dict ionary per network (t e s t n e t / mainnet)

[network : s t r i n g] : { // Dict ionary o f cont rac t addre s s e s with the corre spond ing
compiled s c r i p t (in ASM format)

[address : s t r i n g] : s t r i n g ;
} ;

} ;
compi le r : {

name : s t r i n g ; // Compiler used to compi le t h i s cont rac t
v e r s i on : s t r i n g ; // Compiler v e r s i on used to compi le t h i s cont rac t

}
updatedAt : s t r i n g ; // Last datet ime t h i s a r t i f a c t was updated (in ISO format)

}

i n t e r f a c e AbiFunction {
name : s t r i n g ; // Function name
inputs : AbiInput [] ; // Function inputs / parameters

}

i n t e r f a c e AbiInput {
name : s t r i n g ; // Input name
type : s t r i n g ; // Input type

}

4.5 Extensions

To keep it within the scope of this four-month project, the language described in this chapter has inten-
tionally omitted some functionality that could be valuable to the language. This additional functionality
could be added in a future version of the language. We briefly describe the functionality that we envision
to be added in the future.

The most important extension that we see fit is the addition of structs. These structs could be
defined similar to JavaScript objects or Solidity structs. The compiler would translate these structs to
a custom encoded byte sequence. Since it is possible to split and concatenate byte sequences in Bitcoin
Script, it should be possible to retrieve the parts of this byte sequence that correspond to the struct’s
properties. The JavaScript SDK could provide a deterministic mapping between JavaScript objects and
their Bitcoin Script representation, so a CashScript struct would be translated to the exact same byte
sequence as a JavaScript object.

Another extension is enabling simple array operations. As long as the length of these arrays is
bounded it should be possible to do simple array operations like iterations, getting and setting, and
appending and removing. However, while this could technically be achieved, there is still the Script size
limitation that needs to be accounted for. This is why these possibilities would be further researched
before deciding on an implementation.

A third possible extension is the support for bitwise logic operators and more bounded ’bytes’ types.
BCH has support for the OP AND, OP OR and OP XOR opcodes, which are disabled in BTC. These

23

CHAPTER 4. A HIGH-LEVEL LANGUAGE FOR BITCOIN CASH SCRIPT

opcodes do a bit by bit comparison of the two input variable and output the result of these bitwise
operators. However, when passing inputs of unequal size, these operators cause the full Script to fail.
With regard for safety, we decided to leave these operators out of the language, as they could be the
cause of errors when used wrongly.

A way to enable these operators could be in combination with extended support for bounded ’bytes’
types. Currently, we support the ’bytes20’ and ’bytes32’ types, but this can be extended to more specific
bounded types, so the compiler can check for size at compile time to make sure the two inputs are
absolutely of the same size.

A fourth possible extension is better datetime support. In the current design, it is possible to use an
integer type to represent a Unix timestamp or a block number to do time-based operations. However,
this is not a very user-friendly way to handle time operations. In the future we could add a time type
that allows for more complex time operations. Spedn already offers support for specifying dates using a
standard-formatted date string.

A fifth extension is internal functions inside contracts. This can be helpful to break up functionality
into several functions, while keeping the contract’s external interface the same. This somewhat improves
the readability of the contract, but it is mainly a quality of life improvement, since the contracts can not
get to the size where this separation of concerns would become absolutely necessary.

The final proposed extension is contract inheritance, which would allow further separation of concerns.
This functionality is especially useful when combined with internal functions, as this can allow the
creation of standard libraries and other shared functionality. Since we can remove any unused code from
the compiler output, inheritance and internal functions shouldn’t necessarily lead to bloated contracts.

24

Chapter 5

A compiler for CashScript

5.1 Compiler implementation

In this section we describe the implementation of the compiler that translates the contracts written in
our language into Bitcoin Script. Section 2.2 describes the general structure of a compiler. In this section
we describe the implementation of each of the mentioned compiler stages.

5.1.1 Used tools

One of the goals of our language is to have first class support for integration with JavaScript projects,
which means that we want to be able to compile contracts from within JavaScript code. There are many
tools that can be used to assist with compiler construction, such as Bison or ANTLR, but not all of
these tools are compatible with JavaScript. Luckily, there are many tools available to build compilers
with JavaScript, such as ANTLR, PEG.js, Jison and Chevrotrain [32].

Most tools integrate the lexical analysis and the syntax analysis compiler stages into a single tool.
However, many of these tools stop at the syntax analysis phase, leaving the developer to create their own
solutions for further traversals of the AST. One clear exception to this rule is ANTLR, which provides a
framework for custom AST traversal to assist with semantic analysis, optimisation, and code generation.
ANTLR also offers the possibility to generate parsers and lexers in multiple languages, using the same
grammar definitions. This makes it easier to extend support to other popular programming languages,
such as Java or Python [32].

There is a performance benchmark available for these tools 1, which measures the operations per
second that the tools are capable of when parsing a JavaScript Object Notation (JSON) file. This shows
that Chevrotrain is the most performant tool, while ANTLR comes in second, and other tools such as
PEG.js and Jison lag behind. The benchmark, however, is created by the authors of Chevrotrain, which
could indicate that the benchmark doesn’t hold up in other use-cases. We do not focus on bringing down
compilation time in this project, so this benchmark does not influence our choice of tools.

We do look at the popularity and maintenance of these tools. If we look at an NPM comparison
between the available tools 2, we see that all of the tools have been around for years, and are updated
regularly – Chevrotrain, PEG.js and ANTLR have been updated within the last week at the time of
writing. In terms of downloads, PEG.js and Jison are far above the other tools, but all of them get over
tens of thousands of downloads per week.

Keeping the above in mind it is difficult to name one of these tools the best for the job, so in the
end it boils down to personal preference. The Ivy language is written using PEG.js, which would make
it easy to extract parts of their code and fit it into our own implementation. Most of the Ivy code is
independent of PEG.js though, so using parts of their algorithms is possible even without using PEG.js.
In the end, we decided to go with ANTLR, as this offers just that extra bit of functionality. It also allows
us to potentially offer compiler support for other languages in the future.

1https://sap.github.io/chevrotain/performance/
2https://www.npmtrends.com/chevrotain-vs-pegjs-vs-antlr4-vs-jison

25

https://sap.github.io/chevrotain/performance/
https://www.npmtrends.com/chevrotain-vs-pegjs-vs-antlr4-vs-jison

CHAPTER 5. A COMPILER FOR CASHSCRIPT

5.1.2 Lexical & syntax analysis

During the design of our language and implementation of our grammar, we used a top-down approach.
What this means is that we started with the bigger constructs of the language like contracts and functions,
and we worked down to lower level constructs like assignments and expressions, ending with literals and
values. This is opposed to a bottom-up-approach, which starts with the smallest possible elements of
the language and works up to the bigger constructs.

We leveraged the strength of ANTLR, which allows us to put the lexer and parser definitions in one
single file. On top of this, it allows us to use the actual characters included in tokens, rather than having
to define tokens for every single operator or keyword, as is the case with more traditional tools such as
flex. ANTLR also offers a simplified syntax for recursive rules, so we don’t have to explicitly deal with
left-recursion [20]. An example of these languages features can be seen in the snippet below, showing a
simple expression grammar for arithmetic expressions that respect order of precedence.

exp r e s s i on
: ’ (’ e xp r e s s i on ’) ’
| exp r e s s i on (’* ’ | ’ / ’) exp r e s s i on
| exp r e s s i on (’+ ’ | ’− ’) exp r e s s i on
| NUMBER
;

From the grammar specification using ANTLR’s file format, ANTLR automatically generates a lexer
and parser in the specified target language. ANTLR offers many target languages for this, and several
unofficial languages targets have been implemented by the open source community. We want to integrate
our compiler in JavaScript projects, so the obvious choice would be the default JavaScript target 3.
However, the official target for JavaScript targets the ten-year-old ECMAScript 5 (ES5), which lacks
support for many modern JavaScript constructs, such as classes, modules, and arrow functions.

To gain access to these modern features, as well as a more robust type system, we decided to target
the unofficial TypeScript target 4. This allows us to write the compiler itself using modern development
practices with TypeScript. This also allows first-class support for TypeScript and modern JavaScript
projects, as so-called declarations-files can be automatically generated. There are two drawbacks to using
the TypeScript target. The first drawback is the fact that it is an unofficial target that does not have a
1.x release yet, which means there might be some unexpected behaviour. The second drawback is that
the TypeScript target is not compatible with ES5, so it needs to be used in an environment that supports
at least the ECMAScript 2015 (ES6) standard. Currently, all major browsers and server runtimes have
support for ES6, which is why we decided it was worth the trade-off.

The parser and lexer generated by ANTLR and the ANTLR TypeScript target produce a parse tree,
which we transformed into a more useful AST. This AST consists of different node types for constructs
such as function calls, if-statements, binary operations and literals. The nodes are structured to hold
all necessary data about the source file and to make it easily traversable. The AST was built using an
implementation of ANTLR’s generated visitor interfaces. This visitor allows us to traverse the parse
tree, and return AST nodes in the place of the existing parse tree nodes. For the new AST we also
implemented a generic visitor and traversal class using the visitor pattern 5. These classes are subclassed
in the later stages to define custom AST traversals.

5.1.3 Semantic analysis

The goal of lexical analysis and syntax analysis is to transform a piece of source into an AST and assert
that it is syntactically correct. The goal of the subsequent semantic analysis is to use this AST to
assert that the code makes semantic sense. Two important parts of this semantic analysis step that we
implemented are symbol table checking and type checking.

Symbol table checking

We implemented symbol table checking by creating a tree-like structure of symbol tables, where every
symbol table represents a lexical scope, and contains a reference to the symbol table of its parent’s
scope. This allows symbols to be looked up in the current scope as well as higher scopes. Each symbol

3https://github.com/antlr/antlr4/blob/master/doc/javascript-target.md
4https://github.com/tunnelvisionlabs/antlr4ts
5https://en.wikipedia.org/wiki/Visitor_pattern

26

https://github.com/antlr/antlr4/blob/master/doc/javascript-target.md
https://github.com/tunnelvisionlabs/antlr4ts
https://en.wikipedia.org/wiki/Visitor_pattern

CHAPTER 5. A COMPILER FOR CASHSCRIPT

table is implemented with a Map data structure that maps string identifiers to their corresponding symbol
objects. These symbols contains type of the identifier and a parameter signature in the case of a function.

To check the symbol tables, we implemented an AST traversal that adds a new symbol to the current
scope’s symbol table for every found parameter or variable declaration. Before adding the new symbol,
it is asserted that it is not a redefinition. We decided to disallow variable shadowing, as this provides
an extra vector for human error. Because the contracts are limited in size, we do not believe variable
shadowing is something that will be missed.

It then looks up every identifier it finds in the current scope’s symbol table to assert that it is defined.
We decided to disallow unused variables as this is most likely unintentional and another vector for human
error. After the symbol table checks we know that all symbols are defined, and the symbol table can be
used in the type checking step of semantic analysis.

Type checking

For type checking we added an optional ’type’ field on all expression nodes, which we set in the type
check traversal. The leaf nodes of any expression are either literals or identifiers. For literals the types
are known, while the types of identifiers are extracted from the symbol table. From these leaves, all
expressions such as binary operations and function calls, are visited bottom up. They are checked to
have the correct argument types, and the resulting type is stored on the corresponding nodes. Finally,
these expressions are used in statements such as assignments or if-statements, where they are checked
again to have the correct type.

5.1.4 Code generation

Code generation is the final stage of the compiler. After all syntactical and semantic checks have passed,
we are absolutely sure that the input code is valid, which makes it suitable to be translated into the
target code.

Basic expressions and statements

Many of the expressions and statements in the CashScript language have a one to one mapping, such as
the ’>’ operator that corresponds with the OP GREATERTHAN opcode, or the ’require’ function that
corresponds with the OP VERIFY opcode. Since the Bitcoin Script language is a left-to-right stack-
based language, the way this code is generated is by adding the arguments to these functions or operators
first, followed by their corresponding opcode. Not all of CashScript’s functionality is compiled that easily
though, as there is some more complex functionality than only mapping operators and functions to their
corresponding opcodes.

Variable management

The first thing is that Script has no native support for variables, registers, or other forms of memory
management. The memory management in Script consists of one single stack where values can be stored,
as well as a so called alt-stack that can be used as a secondary stack. The primary stack has several
stack operations, such as OP PICK, which copies an item from anywhere in the stack to the top, while
the alt-stack only has the OP TOALTSTACK and OP FROMALTSTACK operations.

We handle variables in CashScript by simulating a stack during the code generation. This stack keeps
track of all variables and values on the stack, although it doesn’t keep track of their actual values, only
the position. Whenever a variable is needed inside an expression, it is then retrieved from the stack using
the OP PICK opcode. This means that we can always retrieve the correct variable as long as we keep
track of their stack position. Whenever we reassign a variable, we store the new value on the top of the
stack, and we leave the old value on the stack as well. The first found reference is used at all times, so
it doesn’t matter if there are additional occurrences of the variable deeper in the stack.

Conditional blocks

Storing variables this way immediately causes another difficulty though, in the form of conditional blocks.
It is impossible to know at compile time which execution path will be taken, but if local variables are
assigned or other variables are reassigned, the stack can grow in one execution path while staying the
same in the second. In order to deterministically retrieve variables from the stack, we need to make sure
that the stack positions are equal after all branches of an if-statement.

27

CHAPTER 5. A COMPILER FOR CASHSCRIPT

For local variables this is easily solved, as they are not needed after the conditional block, and can be
dropped from the stack. However, when existing variables are reassigned inside a scope, we do want this
change to persist outside of the scope. This is why we decide to change our reassignment method inside
conditional blocks. Instead of adding the new value to the top of the stack, we do a drop-in replacement
of the old value at its original position. There is no straightforward way to do this in Script, so this ends
up being quite costly in terms of operation count.

The way this replacement algorithm works is by removing the old value of the variable from the
stack with an OP ROLL OP DROP combination. This is followed by a number of OP SWAP
OP TOALTSTACK, which puts the values above the variable on the alt-stack and moves the new
value down the stack. Finally when the new value has reached the correct position, the other values are
retrieved from the alt-stack again with OP FROMALTSTACK. The cost of this algorithm is specified
in equation 5.1.

𝑐𝑜𝑠𝑡 = 1 + 1 + 𝑚𝑎𝑥(𝑑− 1, 0) + 𝑚𝑎𝑥(𝑑− 2, 0) + 𝑚𝑎𝑥(𝑑− 2, 0) = 𝑚𝑎𝑥(3 * 𝑑− 3, 2) (5.1)

This algorithm can be optimised for certain hardcoded stack depths by using more specific stack
operations. Nonetheless it will stay a costly operation until a reverse OP ROLL is added to the Script
language. Because this is so costly, we decide to only implement it inside conditional blocks – where it
is necessary – rather than for all reassignments.

Multi-function contracts

The final challenge in code generation is the fact that Script has no built in support for multiple functions
within a single Script. This is why we had to encode these functions using if-statements and so-called
function selectors. Every function gets assigned a number, and to select the function later on, its number
needs to be the first value in the unlocking script.

This is implemented by encoding these functions if-else-statements that check whether the selector
parameter is equal to any of the functions’ selectors. The function bodies’ contents are then added
to the corresponding blocks inside these if-else statements. When there is only one function inside a
contract, this process is skipped, and the Script expects no selector parameter, as it always executes the
one function.

5.1.5 Possible optimisations

Because of time limitations, the CashScript compiler does not contain any optimisations that reduce the
size of the output script. For this project the priority was on creating superior integration capabilities
through the SDK described in section 5.3. However, there are several optimisations that could be imple-
mented in order to reduce the output size. In this subsection we describe several of these optimisations
that could be included in the compiler at a later time.

Merging OP VERIFY with preceding operation

There are many operations that return a Boolean value, such as OP EQUAL or OP CHECKSIG. Al-
most all of the operations that return Booleans have a variant that immediately executes an OP VERIFY
afterwards, such as OP EQUALVERIFY or OP CHECKSIGVERIFY. The occurrences of OP VERIFY
in the output script could be combined with the preceding operation (e.g. OP EQUAL OP VERIFY be-

comes OP EQUALVERIFY). This would save a byte per merge, as two opcodes are merged into one.

Using OP ROLL instead of OP PICK

There are two different opcodes that retrieve a value from an arbitrary stack depth. OP PICK copies
a value to the top of the stack, while OP ROLL moves it to the top of the stack. CashScript currently
uses OP PICK at all times, which results in the need to clean up left-over values at the end of the script
using OP DROP. OP ROLL could be used for the final occurrence of a variable though, as it is not
required after. This results in less cleanup, and in a reduced average stack size at any point in execution.
This in turn makes the average replace operation cheaper, which depends on stack depth of variables.

28

CHAPTER 5. A COMPILER FOR CASHSCRIPT

Using more specific stack operations

Currently OP PICK is used every time a value needs to be retrieved from the stack. There are more
specific stack operations that are hardcoded for specific stack depths, such as OP OVER that copies
the second stack item to the top. By hardcoding these specific stack operations, some bytes can be saved
since the depth parameter of OP PICK does not need to be included.

Removing final OP VERIFY

A script is considered to be valid if the script stack contains just one truthy value after execution. In
other words, there is an implicit execution of OP VERIFY at the end of each contract. Currently
CashScript adds a truthy value as the final operation of the script. However, in some cases the final
occurrence of OP VERIFY can be removed instead, as a final OP VERIFY is implicitly executed at
the end of the script any way. This saves a few bytes since the OP VERIFY and the final data push
can be removed from the script.

Improved stack ordering

The compiler currently keeps track of the stack positions of every variable and retrieves it using OP PICK
whenever it is needed. It is known at compile time though when a variable is needed, so theoretically,
the stack could be ordered in such a way that all variables are at the correct place when they are needed.
This is usually done when manually writing Bitcoin Script. It is not clear how much can be gained from
improved stack ordering, so this would need to be researched further.

Simplification

Certain operations could be simplified at compile time (e.g. sha256(’CashScript’) could be replaced with

the hash result). This would result in fewer operations and generally also a smaller script size, but it
is possible that it results in a bigger script size for some cases, such as the hashing example. These
considerations could still be made at compile time, but most well-implemented contracts are not likely
to contain expressions that would warrant simplification. There is an added complication that we need
to be sure that operations such as string concatenation and type casting happen in the exact same way
as they are done by a Bitcoin node, lest we change the semantic meaning of the contract.

5.1.6 Test suite

To ensure that our compiler works as expected we have implemented a test suite with nearly 100% test
coverage. We structured this test suite by compiler stage. For each of the stages we created source files
targeted at different test classes. The different classes have source files that include something from their
test class, such as redefinition errors. The tests iterate all source files for a class and assert that they
behave in the expected way. For each of the compiler stages one of the test classes is success, which
includes source files with correct uses of the language.

For syntax and lexical analysis, the only additional case is Syntax Error, as these errors are not
further subdivided. This test case includes many different source files with different syntactical errors,
such as incorrectly terminated comments or functions, or assignments instead of comparison inside an
if-statement. For symbol table analysis, there are three different classes of errors: redefinition, undefined
reference, and unused variable. Type checking has many classes of errors, such as unequal type or
unsupported type, and other type errors.

During code generation, the fixture data is more than only source files, as we need to test that the
output matches the expectations. This is why we add the expected output to the fixture data for each of
these files. The test suite still loops over these source files, but asserts that the compiler output matches
the expected output that is stored in a separate file.

5.2 Command line tool

For standalone compilation of CashScript files, we created the cashc command line tool and NPM
package. This command line tool can be used to compile a CashScript file to a JSON file containing the
corresponding artifact, as described in chapter 4. This artifact can be imported into the JavaScript SDK
or other SDKs, might they be implemented in the future.

29

CHAPTER 5. A COMPILER FOR CASHSCRIPT

The command line tool executes all compiler stages. It starts at lexing and parsing with ANTLR,
then builds the AST and goes through the AST traversals as specified in section 5.1. From the final
AST and the generated target code, and artifact is generated, which is exported to the specified file.
The functionality in the command line tool is also exported in the NPM package, so compilation can be
done from the JavaScript SDK as well.

5.3 JavaScript SDK implementation

The JavaScript SDK allows anyone to easily interact with CashScript contracts with a high level of
abstraction. The SDK defines Contract objects, which are JavaScript representations of a CashScript
contract / artifact. These Contract objects can be used to create new Instance objects, which represent
instantiated versions of these contracts, meaning they have had their constructor parameters added.
Contract functions can be called from this instance like a regular JavaScript function and return a
Transaction instance. These Transaction objects can be used to send a specified amount of money to an
address or multiple addresses.

5.3.1 Contract

Contract objects can be created through two static functions on the Contract class. The first is
Contract.fromCashFile , which uses the cashc package to compile a specified CashScript file and gener-

ate an artifact for it. The second function is Contract.fromArtifact , which imports an existing artifact
JSON file. For both of these files, the resulting artifact is stored in a new Contract object, and three
functions are generated on this object: contract.export , contract.new , contract.deployed . export is used
simply to export the contract’s artifact to a file. The other two are more complex.

contract.new uses the constructor inputs specified in the artifact as parameters, which get encoded
and added to the front of the compiled bytecode stored in the artifact. This represents the full redeem
script, and gets passed into the Instance constructor with the full artifact and network string to create
a new contract instance. It also updates the artifact to store the full redeem script under the deployed
addresses.

contract.deployed takes an optional address, and searches the deployed addresses inside the artifact.
If no address is passed, it takes the first deployed address listed for the current network. It then passes
the the full redeem script, full artifact, and network string into the Instance constructor in the same way
as contract.new .

5.3.2 Instance

The section above explains how to use the Contract class to create new contract instances and re-
trieve earlier created instances. This instance object has an address field with its P2SH address, and
a getBalance function that retrieves the amount of money locked inside the contract instance. Besides
these functions, an Instance object also has all the functions that were defined on the contract in the
CashScript file.

The contract functions are extracted from the artifact by looking at the abi field, which has a
specification of all functions, their parameters, and the corresponding function selector, as described in
chapter 4. Together with the passed redeem script this is everything that is needed to call these functions
on the contract. The Instance object has a member field functions under which all generated functions
can be found. These functions return a Transaction object that can be used to send money to an address
or multiple addresses, as can be seen in the example below.

const tx = await i n s t ance . f un c t i on s . spend (pk , new Sig (keypair , 0x01))
. send (in s t ance . address , 10000) ;

A note on transaction signatures

Some cash contract functions require a signature parameter, which needs to be a valid transaction
signature for the current transaction. The current transaction details are unknown at the time of calling
a contract function, so it can not be generated yet. This is why we have a separate Sig class made up
of a keypair and hashtype, that represents a placeholder for these signatures. These placeholders are
automatically replaced by the correct signature during the transaction building phase.

30

CHAPTER 5. A COMPILER FOR CASHSCRIPT

5.3.3 Transaction

Calling any of the functions on a contract instance results in a Transaction object, which can be sent by
specifying a recipient and amount - or a list of these pairs - using the send method. send function calls
can also be replaced by meep function calls with the same signature. The meep function doesn’t send

the transaction, but outputs the debug command to debug the transaction using the meep debugger 6.
The transaction.send method is where the core functionality of the SDK lies. The transaction’s

locktime is automatically set by looking at the current block count, so the user does not have to deal
with manually setting this value to us the tx.time variable in their contracts. Next, a UTXO selection
algorithm is used that keeps track of the running cost of a transaction while adding new UTXOs until
the input amount is higher than the target amount.

The selected UTXOs and the transaction outputs are added to a transaction builder, which is used
to build an incomplete transaction from these inputs and outputs. It is incomplete because the full input
scripts have not been added yet. The corresponding input scripts are then generated from the redeem
script and the function arguments, while replacing the placeholder Sig objects by the correct signatures.

These signatures are created by signing the incomplete transaction using the Sig object’s keypair and
hashtype.

After generating these input scripts they are added to the incomplete transaction, completing the
transaction object. This transaction object is then converted to a hexadecimal format and sent to the
Bitcoin.com mining nodes through the BITBOX library that communicates with the rest . bitcoin .com

Application Programmer Interface (API). The BITBOX library returns an object with the transaction
details that can be used to look up the transaction on a block explorer or programmatically.

6https://github.com/gcash/meep

31

https://github.com/gcash/meep

Chapter 6

Evaluation

6.1 Considered languages

In chapter 3 we discussed the existing languages that compile to Bitcoin Script. Of these languages Ivy
has the most sophisticated tooling, while Spedn has full support for BCH. BitAuth Script is the relative
newcomer and opts to stay close to the original syntax of Script. BALZaC is an academic project that
allows anyone to formally describe Bitcoin transactions, mainly for the sake of formal reasoning about
its behaviour.

Since BitAuth Script is intertwined with the rest of the BitAuth project, it is difficult to evaluate
it on its own. Besides this, it is more like a templating engine on top of Bitcoin Script rather than
a full-fledged language. BALZaC is only usable within their own online IDE, and does not allow the
creation of standalone contracts. There is no current use case for it outside of formal reasoning about
Bitcoin transactions. This is why we do not consider BitAuth Script and BALZaC in the evaluation.

Ivy has a good deal of standalone tooling, but it has been abandoned for a long time, so there is little
practical value in considering it. We still think it would be interesting to consider the language, as its
integration capabilities are more extensive than the rest of the related work, specifically for JavaScript
applications. However, we use participants in our evaluation and we need to be mindful of their time, so
we do not consider Ivy in the evaluation.

This leaves Spedn, the most extensive language among the related work when looking at features,
although it lacks some of Ivy’s integration capabilities. We compare Spedn against the language we
describe in chapter 4, CashScript. We hypothesise that Spedn and CashScript offer similar functionality,
but that CashScript has superior integration capabilities, specifically for JavaScript applications.

The underlying assumption in the motivation for both Spedn and CashScript is that Bitcoin Script is
not accessible and is difficult to write and use. To challenge this assumption, we consider Bitcoin Script
in our evaluation as well.

6.2 Metrics

At the start of this project, we conducted a literature study into studies that compare multiple program-
ming languages with each other. In this literature study we looked at common metrics that are often
used in programming language comparisons, and we reasoned about their applicability to Bitcoin Script
languages. We excluded the metrics that were not applicable or not valuable, while the applicable metrics
are listed below. Of the applicable metrics only development time and correctness relate to CashScript’s
goal of making Bitcoin Cash development more simple and accessible, making them the most important.
The other applicable metrics are measured for reference purposes, rather than a means of evaluation.

The full literature study on programming language comparisons is included in appendix D.

∙ Development time

∙ Implementation correctness

∙ Executable size

∙ Code size

∙ Compilation time

To answer the research questions we also evaluate the integration capabilities of CashScript through

32

CHAPTER 6. EVALUATION

integration time and integration correctness metrics. These metrics are considered more important
than the others, as they align most with this project’s research questions.

6.3 Setup & methods

6.3.1 Contract implementation

The goal of both Spedn and CashScript is to make it easier and more accessible to write Bitcoin Script.
On top of this, CashScript’s goal is also to make it easier and more accessible to integrate these scripts
into JavaScript applications. The main two metrics for this project are therefore the ease-of-writing, and
the ease-of-integration into JavaScript applications. Ease-of-use metrics like this are always difficult to
evaluate as they tend to be subjective.

To measure the ease-of-writing, we ask participants to implement a contract with a given specification.
This contract is a toy program, a small program with semi-complex functionality, but that is simple
enough to implement consistently across multiple languages [33]. When more complex applications are
used for these comparisons, it is difficult to assert that the implementations are actually equivalent
across different languages [33], which is why a simple toy program is used. We measure the time it takes
the participants to complete the implementations – this corresponds with the development time metric.
After the implementation, we ask the participants to rank their preferred languages during the contract
implementation.

We collect the participants’ implementations and compile them on the same machine for consistency.
From this we measure the executable size, code size, and compilation time metrics. To measure the
correctness of the implementations, we compare it to our reference implementations – included in ap-
pendix C – and manually assert that they are semantically equivalent. If they are not, we count the
number of errors that are made in the implementation. Consistently repeated errors are not counted
more than once (such as using the underscore character in a variable name in Spedn).

6.3.2 Contract integration

We test CashScript’s integration capabilities through the integration time metric. For this we provide
the same participants with our CashScript reference implementation. We then ask them to integrate this
into a boilerplate CLI application that allows the contract to be used by its participants. We measure the
time it takes the participants to complete this integration. We also test the correctness of this integration
through manual testing.

For the evaluation of CashScript’s integration capabilities we do not compare CashScript against
Spedn and Script. Preferably we would compare this as well, but the steps required to integrate Spedn
or Script are currently much more extensive than for CashScript. While it would definitely be doable for
experienced Spedn or Script developers, a big part of our participants is inexperienced, and we do not
expect them to be able to make this integration in a reasonable amount of time.

Since Spedn compiles to Bitcoin Script, the steps for integrating these two technologies into JavaScript
are similar. Making this integration would consist of repeating a lot of code that is similar to the
implementation of the CashScript JavaScript SDK. This includes UTXO selection, building incomplete
transactions, and generating transaction signatures and input scripts for these incomplete transactions.

While the required implementation does not need the same level of generality that is included in the
CashScript SDK, someone unfamiliar with Bitcoin’s transaction model and scripting language will have
a hard time even knowing where to begin. Some of the evaluation participants do have this knowledge,
but quite a few don’t and the main audience that stands to benefit from CashScript are those without
this domain knowledge. To be mindful of these participants’ time we decide to forego integration with
Spedn and Script.

There are people who have integrated either Spedn or Script into their applications, so to illustrate
the work that goes into it these can be inspected. Notably, Karol Trzeszczkowski has created a Last
Will contract with Spedn, and integrated the compiled Script into a plugin for the popular Electron
Cash wallet, written in Python 1. Tobias Ruck has created a decentralised exchange for SLP tokens in
Rust. This exchange uses a contract that he wrote by hand with Script 2 and integrated into his Rust
codebase.

1https://github.com/KarolTrzeszczkowski/Electron-Cash-Last-Will-Plugin
2https://github.com/EyeOfPython/slpagora

33

https://github.com/KarolTrzeszczkowski/Electron-Cash-Last-Will-Plugin
https://github.com/EyeOfPython/slpagora

CHAPTER 6. EVALUATION

6.3.3 Similarity to Ethereum’s workflow

A secondary objective of CashScript is creating a language and SDK with a similar workflow. To measure
this goal, we make sure that part of the test group has experience with Ethereum, while another part
does not have this experience. This allows us to look for differences in outcome between these two groups.
To do so, we ask the participants to rate their Ethereum knowledge, as well as their knowledge of other
technologies to discover possible relations.

After doing the whole evaluation, we ask all the participants that are familiar with Ethereum how
similar they think the CashScript language is to Solidity and how similar they think integration into a
JavaScript application is for CashScript and Solidity. We ask them to rate this on a five-point likert
scale ranging from very different to very similar.

6.4 Participants

We collected participants from several groups. For Ethereum developers we approached people we met
at several Ethereum-related conferences or hackathons. We also approached more experienced BCH
developers who already understand and actively use Script, and BCH developers that don’t actively use
Script. We approached these participants through a Telegram channel dedicated to BCH compilers and
Script development. These are high-profile developers in the BCH community that are well-known for
their skills in Script development or general BCH development. We finally also approached a few people
that have both experience with Ethereum and BCH or Bitcoin Script.

In total we have six participants for this evaluation study. Two of these participants are skilled with
Ethereum, but have never done anything with BCH before. Two participants have extensive experience
with both Ethereum and BCH. Two participants are skilled with BCH, but have never done anything
with Ethereum before. Furthermore, all participants are skilled in JavaScript, to ensure that JavaScript
skills are not a bottleneck in the integration assignment.

With this distribution we aim to have a sufficiently varied group of participants, while also including
enough Ethereum developers so the Ethereum-related questions can be answered. The participants
receive a compensation for the time they spent on this evaluation, as the evaluation assignment is quite
long.

34

Chapter 7

Results

7.1 Overview of participants

We asked all participants to rate their experience levels of several relevant technologies, using the included
scale. An overview of the participants and their experience levels is presented in table 7.1.

1 = Never looked in to i t or never heard o f i t
2 = Looked in to i t , but never t r i e d i t
3 = Played around with i t (e . g . f o l l owed t u t o r i a l , ran examples)
4 = Have used i t once in a non−t r i v i a l p r o f e s s i o n a l or pe r sona l p r o j e c t
5 = Have used i t r e g u l a r l y in non−t r i v i a l p r o f e s s i o n a l or pe r sona l p r o j e c t s f o r l e s s

than a year
6 = Have used i t r e g u l a r l y in non−t r i v i a l p r o f e s s i o n a l or pe r sona l p r o j e c t s f o r over a

year

Table 7.1: Overview of evaluation participants and their experience levels.

E
th

er
eu

m
B

it
co

in
C

as
h

Ja
va

Sc
ri

pt
B

it
co

in
Sc

ri
pt

C
as

hS
cr

ip
t

Sp
ed

n

P1 6 2 4 1 1 1

P2 2 6 6 3 1 2

P3 2 5 6 5 1 2

P4 5 5 6 1 1 1

P5 6 2 6 3 1 1

P6 6 5 6 3 3 3

7.2 Contract implementation

We asked all participants to implement a contract with Bitcoin Script, CashScript and Spedn. We mea-
sured the time it took them, the number of errors, the executable size, source code size, and compilation
time. We then asked them which of the languages was their preferred way of writing the contract. The
results of this are presented in table 7.2, table 7.3 and table 7.4.

35

CHAPTER 7. RESULTS

Table 7.2: Results of the contract implementation in Bitcoin Script.

D
ev

el
op

m
en

t
ti

m
e

(m
in

)
E

rr
or

co
un

t

E
xe

cu
ta

bl
e

si
ze

(o
p
co

de
s)

R
an

k
of

pr
ef

er
en

ce

P1 35 4 12 3

P2 60 3 17 1

P3 70 0 13 1

P4 68 4 23 3

P5 54 2 16 3

P6 38 3 14 3

Reference 13

Average (SD) 54.17 (14.86) 2.67 (1.51) 15.43 (3.78) 2.33 (1.03)

Table 7.3: Results of the contract implementation in Spedn.

D
ev

el
op

m
en

t
ti

m
e

(m
in

)
E

rr
or

co
un

t

E
xe

cu
ta

bl
e

si
ze

(o
p
co

de
s)

R
an

k
of

pr
ef

er
en

ce

C
od

e
si

ze
(b

yt
es

)

C
om

pi
la

ti
on

ti
m

e
(s

ec
on

ds
)

P1 33 2 70 1 345

P2 31 1 84 3 448 0.58

P3 7 0 69 2 332 0.56

P4 16 2 67 1 331 0.56

P5 11 1 68 2 350 0.56

P6 7 2 68 1 362 0.56

Reference 69 349 0.56

Average (SD) 17.5 (11.73) 1.33 (0.82) 70.71 (5.94) 1.67 (0.82) 359.57 (40.45) 0.56 (0.01)

36

CHAPTER 7. RESULTS

Table 7.4: Results of the contract implementation in CashScript.

D
ev

el
op

m
en

t
ti

m
e

(m
in

)
E

rr
or

co
un

t

E
xe

cu
ta

bl
e

si
ze

(o
p
co

de
s)

R
an

k
of

pr
ef

er
en

ce

C
od

e
si

ze
(b

yt
es

)

C
om

pi
la

ti
on

ti
m

e
(s

ec
on

ds
)

P1 14 0 74 1 354 0.54

P2 16 0 74 2 308 0.53

P3 9 0 74 3 340 0.54

P4 6 1 74 1 347 0.53

P5 17 0 74 1 354 0.54

P6 10 0 74 2 365 0.53

Reference 74 348 0.54

Average (SD) 12 (4.34) 0.17 (0.41) 74 (0) 1.67 (0.82) 345.14 (18.11) 0.53 (0.00)

7.3 Contract integration

We asked all participants to integrate our reference contract into a boilerplate JavaScript application
that allows the contract to be used from a CLI. We measured the time it took and the number of errors
were made during the integration. The results of this are presented in table 7.5.

Table 7.5: Results of the contract integration.

In
te

gr
at

io
n

ti
m

e
(m

in
)

E
rr

or
co

un
t

P1 97 0

P2 57 0

P3 50 0

P4 44 0

P5 85 0

P6 96 0

Average (SD) 71.5 (23.92) 0 (0)

37

CHAPTER 7. RESULTS

7.4 Similarity to Ethereum’s workflow

We asked the participants who had used Ethereum before whether they thought that the CashScript
language was similar to the Solidity language, and we asked them whether they thought that the Cash-
Script integration process was similar to the Solidity integration process. We asked them to use the
included scale. The results of this are presented in table 7.6.

1 = Very d i f f e r e n t
2 = Somewhat d i f f e r e n t
3 = Not r e a l l y d i f f e r e n t , not r e a l l y s im i l a r
4 = Somewhat s im i l a r
5 = Very s im i l a r

Table 7.6: Results on similarity between the workflows of CashScript and Ethereum.

L
an

gu
ag

e
si

m
ila

ri
ty

In
te

gr
at

io
n

si
m

ila
ri

ty

P1 5 4

P2

P3

P4 4 4

P5 5 2

P6 4 4

Average (SD) 4.5 (0.58) 3.5 (1)

38

Chapter 8

Discussion

We did research into existing solutions to write smart contracts on BTC and BCH. From this we concluded
that BTC has no functional high-level languages 1 that can be used for this, while BCH has Spedn [3].
Both have Bitcoin Script, but as confirmed by our evaluation, this does not offer the same level of
developer experience as a high-level language. In addition, BCH has more functionality in both the
base layer as well as the high-level languages through re-enabled opcodes and the newly introduced
OP CHECKDATASIG [34]. This makes BCH a better candidate than BTC when developing smart
contracts.

In this work we presented CashScript, a new high-level language that sets itself apart from the
related work in high-level languages in several ways. Most importantly, the existing work lacked a good
way to integrate their compiled code into applications. The compiled Bitcoin Script needs a lot of
additional work to be integrated, as discussed in chapter 6. Additionally, the related work disregards the
Ethereum community and makes no effort to engage this body of developers. CashScript is created to be
more similar in workflow to Ethereum and to offer superior JavaScript integration capabilities, without
sacrificing on functionality.

For the evaluation of CashScript we used six participants in total, which is quite a small sample size.
Because of this the conclusions and implications discussed in this chapter carry less weight than with a
larger number of participants.

8.1 Contract implementation

In our evaluation six participants implemented a simple smart contract using Bitcoin Script, Spedn and
CashScript. For these implementations we measured the time needed to develop them, the number of
errors in the implementation, the size of the executable, the size of the code, and the compilation time.
Bitcoin Script does not need to be compiled, so the final two metrics don’t apply to it.

As can be expected, the executable size for hand-crafted Bitcoin Script is the lowest by far, as this
can be precisely optimised for the use-case. Spedn and CashScript compile to very inefficient executable
code that requires around five times the number of opcodes to run a similar contract, where Spedn is
slightly more efficient than CashScript. When looking at code size and compilation time, the difference
between Spedn and CashScript is negligible.

When looking at the development time, we see a different story. Bitcoin Script development takes
the most time, while Spedn is already developed significantly faster, and CashScript contracts have the
shortest development time. However, we believe that this improvement in development time is partially
due to an unfair evaluation setup, as we found out that there is a CashScript example available online
that is very similar to the evaluation assignment 2. This was an oversight during the evaluation design.
While only a minority of the participants ended up using this example, we do believe this has caused
CashScript to come out as somewhat more favourable than it is in reality. Besides, the variance in
development time is much higher for Spedn, ultimately making it difficult to draw significant conclusions
from these figures.

We observe a similar effect when looking at the error count in the implementations. Bitcoin Script
experiences the most errors, while Spedn still experiences a few and CashScript experiences next to none.
Again part of this could be due to the evaluation setup and the existing CashScript example. However,

1Considering that Ivy has been abandoned
2https://github.com/Bitcoin-com/cashscript/blob/master/examples/htlc.cash

39

https://github.com/Bitcoin-com/cashscript/blob/master/examples/htlc.cash

CHAPTER 8. DISCUSSION

in this case we did observe that the errors in the Spedn implementations were mainly due to violations of
expectations – such as disallowing underscores in variable names and enforcing unnecessary typecasting.
Part of the design goals of CashScript was to adhere to developer expectations, making these errors
unlikely to occur.

We also observed errors in Spedn and Bitcoin Script that were due to a confusion between checkLockTime

and checkSequence . These functions are not at all descriptive of their intended use, so it can be expected

that mistakes are made with this. In contrast, with CashScript, we used tx.time and tx.age , which
are more indicative of their intended use. Again this makes these kind of errors unlikely to occur in
CashScript, which could be a legitimate reason for CashScript’s lack of errors.

After using all three languages, we asked the participants to rank them by their preference. In
general most participants preferred the high-level languages over Bitcoin Script, but there was no strong
consensus in preference between CashScript and Spedn, as they have a similar syntax. We did observe
more errors being made with Spedn. Since the participants are not aware of this difference in the amount
of errors, it makes sense that these errors have not influenced their preference.

8.2 Contract integration

Our evaluation shows that JavaScript developers are able to integrate CashScript into their applications
within one and a half hours. This is true regardless of their experience with Bitcoin Cash or Ethereum.
We did not evaluate the integration capabilities against the existing work, but we illustrated the amount
of work needed to make this integration through examples. When looking at the code for the CashScript
integration as completed by our participants, it is evident that CashScript integration is more accessible
than the related work.

We consulted with Tobias Ruck, who is the author of SLP Agora and SLPDEX. Tobias stated that
integrating CashScript is an order of magnitude simpler than integrating Bitcoin Script. He also said
that using it would be a no-brainer if the output was optimised and if it had full support for his use-case
and languages of choice.

In the final weeks of writing this work, the creator of Spedn released a JavaScript library of their own
3 that allows developers to integrate their Spedn contracts into JavaScript applications. It is possible
that this library offers the same integration capabilities as CashScript. Because the Spedn JavaScript
library was released after a big part of our evaluation was already finished, we did not include it in this
evaluation.

8.3 Similarity to Ethereum’s workflow

We evaluated the similarity between CashScript’s workflow and Ethereum’s workflow. To do this we
included four participants in the evaluation that are skilled with Ethereum and we asked them to rate
the similarity between CashScript’s and Solidity’s syntax, and the similarity between integrating each of
the languages into a JavaScript application.

CashScript as a language was rated as somewhat to very similar to the Solidity language as Cash-
Script’s syntax was directly derived from Solidity’s. When asked about the similarity of the overall
workflow of integrating CashScript, the reactions ranged from somewhat similar to somewhat different.
This shows that there is still work to be done to bring these closer together. A big part of Ethereum
development is currently done with the help of Truffle, so this contributes to the workflow that many
Ethereum developers are used to. Tooling that offers Truffle’s functionality for CashScript could be a
contribution to bringing these workflows closer together.

We had initially thought that the participants would show a correlation between their skill levels
and their performances in development time, error count, or integration time. By looking at the data
no significant correlations can be found between the participants’ skill levels and their development
performance. So we cannot say that CashScript is better suited for Ethereum developers than the
related work. We have not applied sophisticated data analysis to come to this conclusion though.

3https://spedn.readthedocs.io/en/latest/bitbox.html

40

https://spedn.readthedocs.io/en/latest/bitbox.html

CHAPTER 8. DISCUSSION

8.4 Threats to validity

When looking at the results we see a significant improvement in development time and error count for
CashScript as compared to the related work. Part of these results could be inflated by an oversight in
the evaluation setup, as discussed earlier in this chapter. The example was only used by a minority
of the participants though. Additionally, the errors that were made in the Spedn and Bitcoin Script
implementations are very unlikely or even impossible to occur in CashScript. These points mitigate the
possible threats to validity caused by this oversight in the evaluation design.

8.5 Conclusions

In this research we have presented a new high-level contract language for BCH that compiles to Bitcoin
Script. This language was evaluated against the most important related work, namely Bitcoin Script and
Spedn. From this evaluation we conclude that CashScript offers the same functionality as the related
work, but is easier to integrate into JavaScript applications. It is developed much faster than Bitcoin
Script, but not significantly faster than Spedn. It is less error-prone to write, but the executable size is
slightly bigger than Spedn’s and much bigger than Bitcoin Script’s. CashScript’s syntax is somewhat to
very similar to Solidity’s, but this does not make it more suited for Ethereum developers. The overall
integration workflow also needs revision to offer more similarity to Ethereum’s.

8.6 Recommendations for further research

Because the evaluation study has only been performed with six participants, the results only present
an indication, rather than conclusive evidence. It can be interesting to repeat a similar research with
a larger body of participants to verify these results. This can be a challenge though, as the current
evaluation study took three to four hours per participant. It can be difficult to find enough participants
willing to dedicate that amount of time.

In chapter 4 we present several extensions to the language such as user-defined structs and contract
inheritance. Additional research could be done into the possibilities for including these kinds of extensions
to the language. Additionally we present several possible optimisations. Some of these optimisations
are easily implemented, but others such as improved stack ordering and expression simplification could
have deeper consequences. Therefore these kinds of optimisations could be a suitable subject for further
research.

We had no time to compare the CashScript library to Spedn’s newly released JavaScript library. This
could be another good candidate for further research as the two libraries both offer improved integration,
but function differently.

41

Acknowledgements

I want to thank Bitcoin.com for providing me with the opportunity to conduct my research and create
CashScript in Tokyo. I want to thank my supervisors Adam Belloum and Gabriel Cardona for their
input and thoughts on the thesis and implementation. I also want to thank the rest of the developer
services team at Bitcoin.com for sharing their thoughts during the standups, and my co-workers in Tokyo
for the great working environment. Finally I want to thank Kevser, for leaving her own work and life
behind her and coming with me to the other side of the world on this four-month adventure.

42

References

[1] Electric Capital. (Mar. 2019). Dev report, [Online]. Available: https://medium.com/@ElectricCapital/
dev-report-476df4ff1fd2 (visited on 04/04/2019).

[2] Chain. (2018). Ivy documentation, [Online]. Available: https://docs.ivy-lang.org/bitcoin/
(visited on 04/12/2019).

[3] T. Pein. (2018). Spedn documentation, [Online]. Available: https://spedn.readthedocs.io/en/
latest/ (visited on 11/20/2018).

[4] Ethereum Foundation. (2019). Web3js documentation, [Online]. Available: https://web3js.

readthedocs.io/en/1.0/ (visited on 06/25/2019).

[5] A. M. Antonopoulos, Mastering Bitcoin: Programming the Open Blockchain, 2nd. O’Reilly Media,
Inc., Jun. 2017, isbn: 978-1-491-95438-6.

[6] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger”, Mar. 2019, [Online].
Available: https://ethereum.github.io/yellowpaper/paper.pdf (visited on 04/05/2019).

[7] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system”, Oct. 2008, [Online]. Available:
https://bitcoin.com/bitcoin.pdf (visited on 04/10/2019).

[8] R. Kalis and A. Belloum, “Validating data integrity with blockchain”, in 2018 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), Dec. 2018, pp. 272–277.
doi: 10.1109/CloudCom2018.2018.00060. [Online]. Available: https://ieeexplore.ieee.org/
document/8591029 (visited on 04/05/2019).

[9] R. Kalis, “Using blockchain to validate audit trail data in private business applications”, University
of Amsterdam, Jun. 2018. [Online]. Available: https://esc.fnwi.uva.nl/thesis/centraal/
files/f1051832702.pdf (visited on 04/05/2019).

[10] G. E. Moore et al., Cramming more components onto integrated circuits, 1965.

[11] L. Shin, “Will this battle for the soul of bitcoin destroy it?”, Forbes, Oct. 2017. [Online]. Available:
https://www.forbes.com/sites/laurashin/2017/10/23/will-this-battle-for-the-soul-

of-bitcoin-destroy-it/ (visited on 12/20/2018).

[12] D. De Rosa. (Apr. 2015). A developer-oriented series about bitcoin, [Online]. Available: https:
//davidederosa.com/basic-blockchain-programming/ (visited on 04/09/2019).

[13] A. Stone. (Nov. 2018). Why bitcoin (cash) script is nearly useless (and what to do about it),
[Online]. Available: https://medium.com/@g.andrew.stone/why-bitcoin-cash-script-is-
nearly-useless-and-what-to-do-about-it-b47adbfeceec (visited on 04/10/2019).

[14] G. Walker. (2015). Learn me a bitcoin, [Online]. Available: http : / / learnmeabitcoin . com/

(visited on 04/10/2019).

[15] J. Fyookball, J. Cramer, Unwriter, M. B. Lundeberg, C. Culianu, and R. X. Charles. (Aug. 2018).
Slp token type 1 protocol specification, [Online]. Available: https://github.com/simpleledger/
slp-specifications/blob/master/slp-token-type-1.md (visited on 04/10/2019).

[16] E. Oldenbrg. (Nov. 2018). Taking op checkdatasig out for a test drive, [Online]. Available: https:
//www.yours.org/content/taking-op_checkdatasig-out-for-a-test-drive-68687aa8e3b9

(visited on 04/04/2019).

[17] M. Möser, I. Eyal, and E. G. Sirer, “Bitcoin covenants”, in International Conference on Finan-
cial Cryptography and Data Security, Springer, 2016, pp. 126–141. [Online]. Available: https:

//maltemoeser.de/paper/covenants.pdf (visited on 08/08/2019).

43

https://medium.com/@ElectricCapital/dev-report-476df4ff1fd2
https://medium.com/@ElectricCapital/dev-report-476df4ff1fd2
https://docs.ivy-lang.org/bitcoin/
https://spedn.readthedocs.io/en/latest/
https://spedn.readthedocs.io/en/latest/
https://web3js.readthedocs.io/en/1.0/
https://web3js.readthedocs.io/en/1.0/
https://ethereum.github.io/yellowpaper/paper.pdf
https://bitcoin.com/bitcoin.pdf
https://doi.org/10.1109/CloudCom2018.2018.00060
https://ieeexplore.ieee.org/document/8591029
https://ieeexplore.ieee.org/document/8591029
https://esc.fnwi.uva.nl/thesis/centraal/files/f1051832702.pdf
https://esc.fnwi.uva.nl/thesis/centraal/files/f1051832702.pdf
https://www.forbes.com/sites/laurashin/2017/10/23/will-this-battle-for-the-soul-of-bitcoin-destroy-it/
https://www.forbes.com/sites/laurashin/2017/10/23/will-this-battle-for-the-soul-of-bitcoin-destroy-it/
https://davidederosa.com/basic-blockchain-programming/
https://davidederosa.com/basic-blockchain-programming/
https://medium.com/@g.andrew.stone/why-bitcoin-cash-script-is-nearly-useless-and-what-to-do-about-it-b47adbfeceec
https://medium.com/@g.andrew.stone/why-bitcoin-cash-script-is-nearly-useless-and-what-to-do-about-it-b47adbfeceec
http://learnmeabitcoin.com/
https://github.com/simpleledger/slp-specifications/blob/master/slp-token-type-1.md
https://github.com/simpleledger/slp-specifications/blob/master/slp-token-type-1.md
https://www.yours.org/content/taking-op_checkdatasig-out-for-a-test-drive-68687aa8e3b9
https://www.yours.org/content/taking-op_checkdatasig-out-for-a-test-drive-68687aa8e3b9
https://maltemoeser.de/paper/covenants.pdf
https://maltemoeser.de/paper/covenants.pdf

REFERENCES

[18] A. Zegers. (Dec. 2018). The story of op checkdatasig, [Online]. Available: https://medium.com/
@Mengerian/the-story-of-op-checkdatasig-c2b1b38e801a (visited on 07/19/2019).

[19] T. Pein. (Dec. 2018). Spending constraints with op checkdatasig, [Online]. Available: https :

//honest.cash/v2/pein%5C_sama/spending-constraints-with-op%5C_checkdatasig-172

(visited on 07/19/2019).

[20] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools, 2nd. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1986, isbn: 0-201-10088-6.

[21] Ethereum. (2019). Solidity documentation, [Online]. Available: https://solidity.readthedocs.
io/en/latest/ (visited on 04/19/2019).

[22] Chain. (Dec. 2017). Ivy for bitcoin: A smart contract language that compiles to bitcoin script, [On-
line]. Available: https://blog.chain.com/ivy-for-bitcoin-a-smart-contract-language-
that-compiles-to-bitcoin-script-bec06377141a (visited on 11/20/2018).

[23] N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, and R. Zunino. (2018). Balzac documentation, [On-
line]. Available: https://blockchain.unica.it/balzac/docs/ (visited on 05/31/2019).

[24] N. Atzei, M. Bartoletti, S. Lande, and R. Zunino, “A formal model of bitcoin transactions”, Jan.
2018. [Online]. Available: https://eprint.iacr.org/2017/1124.pdf (visited on 06/03/2019).

[25] J. Dreyzehner. (Feb. 2019). Just released: Bitauth ide – write and debug custom bitcoin scripts,
[Online]. Available: https://blog.bitjson.com/bitauth-ide-write-and-debug-custom-
bitcoin-scripts-aad51f6e3f44 (visited on 04/12/2019).

[26] L. McIver and D. Conway, “Seven deadly sins of introductory programming language design”,
in Proceedings 1996 International Conference Software Engineering: Education and Practice, Jan.
1996, pp. 309–316. doi: 10.1109/SEEP.1996.534015. [Online]. Available: https://ieeexplore.
ieee.org/document/534015 (visited on 04/18/2019).

[27] W. Bright. (Jan. 2014). So you want to write your own language, [Online]. Available: http :

/ / www . drdobbs . com / architecture - and - design / so - you - want - to - write - your - own -

language/240165488 (visited on 04/18/2019).

[28] ConsenSys. (May 2019). Solidity is twice as popular as the next blockchain coding language, [On-
line]. Available: Solidity%20is%20Twice%20as%20Popular%20as%20the%20Next%20Blockchain%
20Coding%20Language (visited on 05/30/2019).

[29] T. Ho. (Mar. 2008). How safe is your programming language, [Online]. Available: http://tobyho.
com/2008/03/30/how-safe-is-your-programming/ (visited on 04/19/2019).

[30] Truffle. (2018). Truffle documentation, [Online]. Available: https://www.trufflesuite.com/docs
(visited on 06/19/2019).

[31] V. Buterin, “Ethereum: A next-generation smart contract and decentralized application platform”,
2013, [Online]. Available: https://github.com/ethereum/wiki/wiki/White-Paper (visited on
04/05/2019).

[32] F. Tomassetti. (Jul. 2017). Parsing in javascript: Tools and libraries, [Online]. Available: https:
//tomassetti.me/parsing-in-javascript/ (visited on 04/17/2019).

[33] Unknown. (2008). The computer language benchmarks game, [Online]. Available: https://benchmarksgame-
team.pages.debian.net/benchmarksgame/ (visited on 04/11/2019).

[34] bitcoincash.org. (2019). Bitcoin cash spec, [Online]. Available: https://github.com/bitcoincashorg/
bitcoincash.org/tree/master/spec (visited on 12/20/2018).

[35] R. Henderson and B. Zorn, “A comparison of object-oriented programming in four modern lan-
guages”, Software: Practice and Experience, vol. 24, no. 11, pp. 1077–1095, 1994. [Online]. Available:
https://pdfs.semanticscholar.org/ddc2/942bb7b7c87b803355d1942924a28644128b.pdf

(visited on 01/30/2019).

[36] L. Prechelt, “An empirical comparison of seven programming languages”, Computer, no. 10, pp. 23–
29, 2000. [Online]. Available: https://ieeexplore.ieee.org/document/876288 (visited on
01/30/2019).

[37] L. Mannila and M. de Raadt, “An objective comparison of languages for teaching introductory
programming”, in Proceedings of the 6th Baltic Sea conference on Computing education research:
Koli Calling 2006, ACM, 2006, pp. 32–37. [Online]. Available: https://eprints.usq.edu.au/
1701/3/Mannila_DeRaadt_KOLI2006_PV.pdf (visited on 01/30/2019).

44

https://medium.com/@Mengerian/the-story-of-op-checkdatasig-c2b1b38e801a
https://medium.com/@Mengerian/the-story-of-op-checkdatasig-c2b1b38e801a
https://honest.cash/v2/pein%5C_sama/spending-constraints-with-op%5C_checkdatasig-172
https://honest.cash/v2/pein%5C_sama/spending-constraints-with-op%5C_checkdatasig-172
https://solidity.readthedocs.io/en/latest/
https://solidity.readthedocs.io/en/latest/
https://blog.chain.com/ivy-for-bitcoin-a-smart-contract-language-that-compiles-to-bitcoin-script-bec06377141a
https://blog.chain.com/ivy-for-bitcoin-a-smart-contract-language-that-compiles-to-bitcoin-script-bec06377141a
https://blockchain.unica.it/balzac/docs/
https://eprint.iacr.org/2017/1124.pdf
https://blog.bitjson.com/bitauth-ide-write-and-debug-custom-bitcoin-scripts-aad51f6e3f44
https://blog.bitjson.com/bitauth-ide-write-and-debug-custom-bitcoin-scripts-aad51f6e3f44
https://doi.org/10.1109/SEEP.1996.534015
https://ieeexplore.ieee.org/document/534015
https://ieeexplore.ieee.org/document/534015
http://www.drdobbs.com/architecture-and-design/so-you-want-to-write-your-own-language/240165488
http://www.drdobbs.com/architecture-and-design/so-you-want-to-write-your-own-language/240165488
http://www.drdobbs.com/architecture-and-design/so-you-want-to-write-your-own-language/240165488
Solidity%20is%20Twice%20as%20Popular%20as%20the%20Next%20Blockchain%20Coding%20Language
Solidity%20is%20Twice%20as%20Popular%20as%20the%20Next%20Blockchain%20Coding%20Language
http://tobyho.com/2008/03/30/how-safe-is-your-programming/
http://tobyho.com/2008/03/30/how-safe-is-your-programming/
https://www.trufflesuite.com/docs
https://github.com/ethereum/wiki/wiki/White-Paper
https://tomassetti.me/parsing-in-javascript/
https://tomassetti.me/parsing-in-javascript/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://github.com/bitcoincashorg/bitcoincash.org/tree/master/spec
https://github.com/bitcoincashorg/bitcoincash.org/tree/master/spec
https://pdfs.semanticscholar.org/ddc2/942bb7b7c87b803355d1942924a28644128b.pdf
https://ieeexplore.ieee.org/document/876288
https://eprints.usq.edu.au/1701/3/Mannila_DeRaadt_KOLI2006_PV.pdf
https://eprints.usq.edu.au/1701/3/Mannila_DeRaadt_KOLI2006_PV.pdf

REFERENCES

[38] K. Ebcioglu, V. Sarkar, T. El-Ghazawi, J. Urbanic, and P. S. Center, “An experiment in measuring
the productivity of three parallel programming languages”, in Proceedings of the Third Workshop
on Productivity and Performance in High-End Computing, 2006, pp. 30–36.

[39] M. Fourment and M. R. Gillings, “A comparison of common programming languages used in
bioinformatics”, BMC bioinformatics, vol. 9, no. 1, p. 82, 2008. [Online]. Available: https://

link.springer.com/article/10.1186/1471-2105-9-82 (visited on 01/30/2019).

[40] T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillere, “Popularity, interoperability, and
impact of programming languages in 100,000 open source projects”, in Computer Software and
Applications Conference (COMPSAC), 2013 IEEE 37th Annual, IEEE, 2013, pp. 303–312.

[41] S. Nanz, S. West, K. S. Da Silveira, and B. Meyer, “Benchmarking usability and performance
of multicore languages”, in Empirical Software Engineering and Measurement, 2013 ACM/IEEE
International Symposium on, IEEE, 2013, pp. 183–192.

[42] S. B. Aruoba and J. Fernández-Villaverde, “A comparison of programming languages in macroeco-
nomics”, Journal of Economic Dynamics and Control, vol. 58, pp. 265–273, 2015. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/S0165188915000883 (visited on
01/30/2019).

[43] S. Nanz and C. A. Furia, “A comparative study of programming languages in rosetta code”, in
Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference on, IEEE,
vol. 1, 2015, pp. 778–788. [Online]. Available: https://ieeexplore.ieee.org/document/7194625
(visited on 01/31/2019).

45

https://link.springer.com/article/10.1186/1471-2105-9-82
https://link.springer.com/article/10.1186/1471-2105-9-82
https://www.sciencedirect.com/science/article/pii/S0165188915000883
https://ieeexplore.ieee.org/document/7194625

Acronyms

ABI Application Blockchain Interface. 22, 23

ANTLR Another Tool For Language Recognition. 19, 25, 26, 30

API Application Programmer Interface. 31

AST Abstract Syntax Tree. 13, 25–27, 30

BCH Bitcoin Cash. 1, 6, 9–17, 19, 23, 32, 34, 39, 41, 52, 54

BTC Bitcoin. 1, 6, 9, 10, 14–17, 19, 23, 39, 52

CLI Command Line Interface. 15, 17, 33, 37, 51, 52, 54

CTOR Canonical Transaction Ordering. 9

DAG Directed Acyclic Graph. 4, 10

ES5 ECMAScript 5. 26

ES6 ECMAScript 2015. 26

HTLC Hash Time Locked Contract. 22

IDE Integrated Development Environment. 15–17, 32

JSON JavaScript Object Notation. 25, 29, 30

NPM Node Package Manager. 6, 15, 25, 29, 30, 51, 52, 54, 55

oclif Open CLI Framework. 54

P2MS Pay-to-Multi-Signature. 11

P2PK Pay-to-Public-Key. 11

P2PKH Pay-to-Public-Key-Hash. 11, 12

P2SH Pay-to-Script-Hash. 4, 11–13, 19, 23, 30

PoW Proof-of-Work. 8

SDK Software Development Kit. 6, 7, 14–17, 19, 23, 28–31, 33, 34, 52, 55

SLP Simple Ledger Protocol. 11, 12, 33

UTXO Unspent Transaction Output. 4, 10–13, 15, 31, 33

46

Appendix A

Code repository

The full implementation of the CashScript compiler and the CashScript SDK can be found in the code
repository at https://github.com/Bitcoin-com/cashscript. This repository contains the full code for
the CashScript compiler, CLI tool, and SDK, as well as usage examples and detailed READMEs. The full
documentation for CashScript can be found at https://developer.bitcoin.com/cashscript/docs/

getting-started. The code used in the evaluation can be found at https://github.com/rkalis/

thesis-evaluation.

47

https://github.com/Bitcoin-com/cashscript
https://developer.bitcoin.com/cashscript/docs/getting-started
https://developer.bitcoin.com/cashscript/docs/getting-started
https://github.com/rkalis/thesis-evaluation
https://github.com/rkalis/thesis-evaluation

Appendix B

CashScript grammar

grammar CashScr ipt ;

s ou r c eF i l e
: c on t r a c tDe f i n i t i o n EOF
;

c on t r a c tDe f i n i t i o n
: ’ contract ’ I d e n t i f i e r parameterLi s t ’{ ’ f u n c t i o nDe f i n i t i o n * ’} ’
;

f u n c t i o nDe f i n i t i o n
: ’ funct ion ’ I d e n t i f i e r parameterLi s t ’{ ’ statement * ’} ’
;

parameterLi s t
: ’ (’ (parameter (’ , ’ parameter) *) ? ’) ’
;

parameter
: typeName I d e n t i f i e r
;

b lock
: ’{ ’ statement * ’} ’
| statement
;

statement
: v a r i a b l eD e f i n i t i o n
| ass ignStatement
| timeOpStatement
| requ i reStatement
| i fS tatement
;

v a r i a b l eD e f i n i t i o n
: typeName I d e n t i f i e r ’= ’ exp r e s s i on ’ ; ’
;

ass ignStatement
: I d e n t i f i e r ’= ’ exp r e s s i on ’ ; ’
;

timeOpStatement
: ’ r equ i r e ’ ’ (’ TxVar ’>=’ expr e s s i on ’) ’ ’ ; ’
;

r equ i reStatement
: ’ r equ i r e ’ ’ (’ e xp r e s s i on ’) ’ ’ ; ’
;

i fS tatement
: ’ i f ’ ’ (’ e xp r e s s i on ’) ’ i fB l o ck=block (’ e l s e ’ e l s eB l o ck=block) ?
;

48

APPENDIX B. CASHSCRIPT GRAMMAR

f un c t i onCa l l
: I d e n t i f i e r e xp r e s s i o nL i s t // Only bu i l t−in f unc t i on s are accepted
;

e xp r e s s i o nL i s t
: ’ (’ (exp r e s s i on (’ , ’ e xp r e s s i on) *) ? ’) ’
;

e xp r e s s i on
: ’ (’ e xp r e s s i on ’) ’ # Parenthes i s ed
| typeName ’ (’ e xp r e s s i on ’) ’ # Cast
| f un c t i onCa l l # Funct ionCal lExpress ion
| exp r e s s i on ’ [’ index=NumberLiteral ’] ’ # TupleIndexOp
| exp r e s s i on ’ . length ’ # SizeOp
| obj=expr e s s i on ’ . s p l i t ’ ’ (’ index=expr e s s i on ’) ’ # SplitOp
// | l e f t=expr e s s i on op=(’++’ | ’−− ’)
// | op=(’ ! ’ | ’ ˜ ’ | ’+ ’ | ’− ’ | ’++’ | ’−− ’) r i g h t=expr e s s i on
| op=(’ ! ’ | ’− ’) exp r e s s i on # UnaryOp
// | exp r e s s i on ’** ’ e xp r e s s i on −−− No power
// | exp r e s s i on (’* ’ | ’ / ’ | ’% ’) exp r e s s i on −−− OP MUL i s s t i l l d i s ab l ed
| l e f t=expr e s s i on op=(’/ ’ | ’% ’) r i g h t=expr e s s i on # BinaryOp
| l e f t=expr e s s i on op=(’+’ | ’− ’) r i g h t=expr e s s i on # BinaryOp
// | exp r e s s i on (’>> ’ | ’<< ’) e xp r e s s i on −−− OP LSHIFT 7 RSHIFT are d i s ab l ed
| l e f t=expr e s s i on op=(’< ’ | ’<=’ | ’> ’ | ’>=’) r i g h t=expr e s s i on # BinaryOp
| l e f t=expr e s s i on op=(’==’ | ’ != ’) r i g h t=expr e s s i on # BinaryOp
// | l e f t=expr e s s i on op=’&’ r i g h t=expr e s s i on −−− Disabled b i tw i s e l o g i c f o r now
// | l e f t=expr e s s i on op= ’^ ’ r i g h t=expr e s s i on
// | l e f t=expr e s s i on op= ’ | ’ r i g h t=expr e s s i on
| l e f t=expr e s s i on op=’&&’ r i g h t=expr e s s i on # BinaryOp
| l e f t=expr e s s i on op= ’ | | ’ r i g h t=expr e s s i on # BinaryOp
| ’ [’ (e xp r e s s i on (’ , ’ e xp r e s s i on) *) ? ’] ’ # Array
| I d e n t i f i e r # I d e n t i f i e r
| l i t e r a l # L i t e r a lExp r e s s i on
;

l i t e r a l
: Boo l eanL i t e ra l
| numberLitera l
| S t r i n gL i t e r a l
| HexLi te ra l
;

numberLitera l
: NumberLiteral NumberUnit?
;

typeName
// : ’ int ’ | ’ bool ’ | ’ s t r i ng ’ | ’ address ’ | ’ pubkey ’ | ’ s i g ’ | Bytes
: ’ int ’ | ’ bool ’ | ’ s t r i ng ’ | ’ pubkey ’ | ’ s i g ’ | ’ datas ig ’ | Bytes
;

Bytes
: ’ bytes ’ (’ 20 ’ | ’ 32 ’) ?
;

Boo l eanL i t e ra l
: ’ true ’ | ’ f a l s e ’
;

NumberUnit
: ’ s a t o sh i s ’ | ’ sat s ’ | ’ f inney ’ | ’ b i t s ’ | ’ b i t co in ’
| ’ seconds ’ | ’ minutes ’ | ’ hours ’ | ’ days ’ | ’ weeks ’
;

NumberLiteral
: [−]?[0−9]+ ([eE] [0−9]+)?
;

S t r i n gL i t e r a l
: ’ ” ’ (’∖∖” ’ | ˜ [”∖ r ∖n]) *? ’” ’
| ’∖ ’ ’ (’∖∖∖ ’ ’ | ˜ [’∖ r ∖n]) *? ’∖ ’ ’
;

49

APPENDIX B. CASHSCRIPT GRAMMAR

HexLi te ra l
: ’ 0 ’ [xX] [0−9A−Fa−f]+
;

TxVar
: ’ tx . age ’
| ’ tx . time ’
;

I d e n t i f i e r
: [a−zA−Z] [a−zA−Z0−9]*
;

WHITESPACE
: [∖ t ∖ r ∖n∖u000C]+ −> sk ip
;

COMMENT
: ’/* ’ .*? ’*/ ’ −> channel (HIDDEN)
;

LINE COMMENT
: ’// ’ ˜ [∖ r ∖n]* −> channel (HIDDEN)
;

50

Appendix C

Evaluation Assignment

C.1 Contract implementation

Alice, Bob, and Carol come to an agreement that they encode in a cash contract on Bitcoin Cash. They
lock up an amount of BCH inside this contract and make the following agreements:

∙ Alice can always spend the money by providing her transaction signature.

∙ Bob can spend the money when a timeout block has been reached, by providing his transaction
signature.

∙ Carol can spend the money by providing her transaction signature and the preimage of a hash
stored in the contract.

C.1.1 Specification

Implement a cash contract that takes the following parameters:

∙ alicePk : alice’s public key

∙ bobPk : bob’s public key

∙ carolPk : carol’s public key

∙ dataHash : the sha256 hash of a secret that carol knows

∙ timeout : the block number after which bob can spend

For the high-level languages Spedn and CashScript, these parameters should be defined as contract
constructor parameters. Bitcoin Script lacks the concept of a constructor or constructor parameters, so
they should be included as a placeholder at the correct spot in the Script (e.g. <alicePk>, <dataHash>).

The cash contract should have three functions / challenges:

1. Takes alice’s signature as an argument, and executes a signature check with alice’s signature and
public key.

2. Takes bob’s signature as an argument, and executes a signature check with bob’s signature and
public key. Also checks that the block number of the transaction is at least equal to the specified
timeout.

3. Takes carol’s signature and a raw data preimage as arguments, and executes a signature check with
carol’s signature and public key. Also checks that the sha256 hash of the passed preimage is equal
to the stored dataHash.

For the high-level languages Spedn and CashScript, functions / challenges should be defined for each
of these scenarios that take the correct parameters and execute the correct checks. Bitcoin Script lacks
the concept of functions / challenges, so instead, execution paths using if-else statements should be used,
as can be seen in chapter 7 of Mastering Bitcoin by Andreas Antonopoulos 1.

C.1.2 Documentation links

Documentation for Spedn can be found at https://spedn.readthedocs.io/en/latest/ and its CLI
tool can be installed with NPM at https://www.npmjs.com/package/spedn-cli. Its source code can

1https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc#using-flow-control-in-scripts

51

https://spedn.readthedocs.io/en/latest/
https://www.npmjs.com/package/spedn-cli
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc#using-flow-control-in-scripts

APPENDIX C. EVALUATION ASSIGNMENT

be found at https://bitbucket.org/o-studio/spedn/src/master/, where examples can be found in
the examples folder.

Documentation for CashScript can be found at https://developer.bitcoin.com/cashscript/

docs/getting-started/, its CLI tool can be installed with NPM at https://www.npmjs.com/package/
cashc, and its JavaScript SDK can be installed with NPM at https://www.npmjs.com/package/

cashscript. Its source code can be found at https://github.com/Bitcoin-com/cashscript, where
examples can be found in the examples folder.

Bitcoin Script does not have a central developer documentation, nor does it have related tools,
but https://en.bitcoin.it/wiki/Script provides a good overview of the language as well as its
features. This website only includes BTC functionality, but for the purpose of this evaluation, no
BCH-specific functionality is needed. Another good resource to read about Bitcoin Script is https:

//github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc.

C.1.3 Setup

Before starting, please install Node.js as well as the Spedn and CashScript command line tools and verify
that they’re working correctly by trying to compile one of the examples.

npm i n s t a l l −g spedn−c l i
npm i n s t a l l −g cashc

g i t c l one g i t@bi tbucket . org : o−s tud io / spedn . g i t
g i t c l one git@github . com : Bitco in−com/ ca sh s c r i p t . g i t

spedn compi le −c spedn/examples /Expir ingTip . spedn
cashc −o a r t i f a c t . j s on c a s h s c r i p t / examples / transfer with t imeout . cash
cat a r t i f a c t . j s on

52

https://bitbucket.org/o-studio/spedn/src/master/
https://developer.bitcoin.com/cashscript/docs/getting-started/
https://developer.bitcoin.com/cashscript/docs/getting-started/
https://www.npmjs.com/package/cashc
https://www.npmjs.com/package/cashc
https://www.npmjs.com/package/cashscript
https://www.npmjs.com/package/cashscript
https://github.com/Bitcoin-com/cashscript
https://en.bitcoin.it/wiki/Script
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch07.asciidoc

APPENDIX C. EVALUATION ASSIGNMENT

C.1.4 Reference Implementations

CashScript

cont rac t Evaluat ion (
pubkey al icePk ,
pubkey bobPk ,
pubkey carolPk ,
bytes32 dataHash ,
i n t timeout

) {
f unc t i on a l i c e (s i g a l i c e S i g) {

r e qu i r e (checkSig (a l i c e S i g , a l i c ePk)) ;
}

f unc t i on bob (s i g bobSig) {
r e qu i r e (checkSig (bobSig , bobPk)) ;
r e qu i r e (tx . time >= timeout) ;

}

f unc t i on c a r o l (s i g ca ro lS i g , bytes preimage) {
r e qu i r e (checkSig (ca ro lS i g , carolPk)) ;
r e qu i r e (sha256 (preimage) == dataHash) ;

}
}

Spedn

cont rac t Evaluat ion (
PubKey al icePk ,
PubKey bobPk ,
PubKey carolPk ,
Sha256 dataHash ,
i n t timeout

) {
cha l l eng e a l i c e (S ig a l i c e S i g) {

v e r i f y checkSig (a l i c e S i g , a l i c ePk) ;
}

cha l l eng e bob (Sig bobSig) {
v e r i f y checkSig (bobSig , bobPk) ;
v e r i f y checkLockTime (TimeStamp(timeout)) ;

}

cha l l eng e c a r o l (S ig ca ro lS i g , bin preimage) {
v e r i f y checkSig (ca ro lS i g , carolPk) ;
v e r i f y sha256 (preimage) == dataHash ;

}
}

Bitcoin Script

OP IF
<a l i cePk> OP CHECKSIG

OP ELSE OP IF
<timeout> OP CHECKLOCKTIMEVERIFY OP DROP
<bobPk> OP CHECKSIG

OP ELSE
<carolPk> OP CHECKSIGVERIFY
OP SHA256 <dataHash> OP EQUAL

OP ENDIF OP ENDIF

53

APPENDIX C. EVALUATION ASSIGNMENT

C.2 Contract Integration

Alice, Bob, and Carol want to use their contract through a shared CLI. For this they created the
contract−cli tool. In this tool they want to encode an instance of their contract with their public keys,

a chosen timeout block, and a data hash. They each want their own CLI command so they can run the
CLI for their own part of the contract.

They implemented a boilerplate CLI application with commands for each of them, as well as a function
to display the contract’s address and current balance and a function to send money to the contract from
their own address. They implemented the function that allows them to send money to the contract,
but now they are stuck on integrating the contract functionality into their CLI tool. They asked you to
implement this functionality for them and sent you their code repository 2.

C.2.1 Participants & data

The three participants of the contract are Alice, Bob, and Carol. Their details are included below.

∙ Alice

– Address: bchtest:qqftvzhuqj6z56phh3vsasq8atmchrnneu7ufc6ej5

– Public key: 021ed9d1795a0c4a10fabb9f4678c70015b6d4ee7a39fa2d9e5eec3b6465d6eeb0

– Private key WIF: cSU1aiAuMCc4xsSaRiuSscLQmc4uqs8bHv2riopVXiC8Wqgws7FS

∙ Bob

– Address: bchtest:qqsd2c2s4hdhelzprchggm27s3lt2ngmughvnhhj4f

– Public key: 028ba2eb3ccd6aabdd381844f6eda1bb8968bc7f433b8028ab5cd3e3a80476c521

– Private key WIF: cVcmt7ZfnygxAuNuG15mTxfnK7cKeb3ziF6jTQKaApFc6EYqdWVs

∙ Carol

– Address: bchtest:qrr49yxr30rzukvrf6gqettwr8m5qjxhnyvcrtrsn5

– Public key: 028ee1e748dff218e8b4072251e61851ef1045f2e43509b91c8b986f27409f31e0

– Private key WIF: cVLe9DA9SNBpbJFxPc64sWqNFXn8ANReNotXpjyMLpXj5zcoM1SZ

Bob’s timeout block number is 1000000 and Carol’s secret preimage is 43617368536372697074 . The
necessary data is already included inside the CLI tool. All participants have an amount of BCH on their
addresses, and the contract comes preloaded with funds as well.

C.2.2 Repository structure & setup

The CLI tool is created using Node.js and Open CLI Framework (oclif). All the required information
can be found inside this document and the src directory inside the linked repository. In src/global . js

the bitbox tool 3 is initialised and the required data is set up to initialise the contract, but the contract
still needs to be imported and initialised. src/contract.cash contains the CashScript source code for the
contract.

The CLI contains JavaScript files for the different commands of the CLI under src/commands : alice ,

bob , carol , details , fund . The fund command is already implemented, and can be used to send funds
to the contract once it is initialised. The rest of the commands still need to be implemented, but have
their command line arguments set up correctly.

To set up the local development environment you need to have Node.js and NPM installed locally.
Then clone the repository, navigate into it, and install the dependencies.

g i t c l one git@github . com : r k a l i s / th e s i s−eva lua t i on . g i t
cd th e s i s−eva lua t i on
npm i n s t a l l

The CLI can be used by running ./bin/run . If everything is set up correctly, this will display the
tool’s usage information.

VERSION
the s i s−eva lua t i on /1 . 0 . 0 darwin−x64 node−v11 . 1 5 . 0

2https://github.com/rkalis/thesis-evaluation
3https://developer.bitcoin.com/bitbox/docs/getting-started

54

https://github.com/rkalis/thesis-evaluation
https://developer.bitcoin.com/bitbox/docs/getting-started

APPENDIX C. EVALUATION ASSIGNMENT

USAGE
$ contract−c l i [COMMAND]

COMMANDS
a l i c e Send money out o f the cont rac t by prov id ing Al ice ’ s WIF
bob Send money out o f the cont rac t by prov id ing Bob ’ s WIF a f t e r the timeout block
c a r o l Send money out o f the cont rac t by prov id ing Carol ’ s WIF and the c o r r e c t data

preimage
d e t a i l s Display the contract ’ s address and balance
fund Send money to the cont rac t
he lp d i sp l ay help f o r contract−c l i

C.2.3 Specification

src/global . js includes the data to initialise the contract. This should be implemented inside the indicated

function. When this is implemented correctly, the contractInstance is exported alongside the network
string and bitbox instance, and imported in the different command files.

The first command is the details command. This should retrieve the contract instance’s address as
well as its balance, and display it. Next there are commands for each of the three participants that allow
them to send money out of the contract. These contain flags for the recipient of the funds, the amount
to send, and the private key WIF to use (included earlier in this document). Carol’s command also
contains a flag that allows her to pass in the correct preimage (included earlier in this document). These
commands should be implemented by calling the correct contract functions with the correct parameters.
It is not necessary to implement proper error handling.

During the development commands can be tested by running:

. / bin /run [COMMAND] [FLAGS]

C.2.4 Documentation links

All required documentation links for CashScript are included in section C.1. You will additionally
need to use the BITBOX SDK for general Bitcoin functionality. The BITBOX documentation can
be found at https://developer.bitcoin.com/bitbox/docs/getting-started and it can be installed
with NPM at https://www.npmjs.com/package/bitbox-sdk. Its source code can be found at https:

//github.com/Bitcoin-com/bitbox-sdk, where examples can be found in the examples folder.

55

https://developer.bitcoin.com/bitbox/docs/getting-started
https://www.npmjs.com/package/bitbox-sdk
https://github.com/Bitcoin-com/bitbox-sdk
https://github.com/Bitcoin-com/bitbox-sdk

Appendix D

Literature study on programming
language comparison

We conducted a short literature study into programming language comparisons to get an overview of
the different metrics generally used in programming language comparison studies. We compared existing
studies that compare languages against each other, and we made an overview of the metrics that are
used in these studies. An overview of these metrics is presented in tables D.1, D.2, and D.3.

D.1 Programming language comparison studies

D.1.1 Henderson & Zorn (1994) [35]

The research of Henderson & Zorn focuses mainly on object oriented programming languages and how
object orientation is used within those languages. The research is quite old, so it compares C++, Modula-
3, Sather, Oberon-2 and Self, most of which are not very widespread at this time. For their comparison
they implemented a simple object-oriented that models classroom administration.

They compared these languages first on their language features regarding inheritance, dynamic dis-
patch, code reuse and information hiding. Next they did a performance comparison using the different
implementations of the classroom administration application. They measured execution time, compile
time and program size in bytes.

D.1.2 Prechelt (2000) [36]

Prechelt has published multiple papers on programming language comparisons that all use similar meth-
ods. They compare C, C++, Java, Perl, Python, Rexx, and Tcl. They compare the performance of these
languages by executing the Phonecode problem [36]. For this he gathered many different implementations
of this problem in the different languages. For this he approached people of different skill levels, so the
implementations are of varying quality.

He executed these different implementations of the phonecode problem on different data sets, and
compared them on the following metrics: correctness of the output, execution time, memory usage,
program size in lines of code, time taken by the programmers, and programming productivity in terms
of lines of code per hour. The author also state whether the languages are interpreted or compiled.

D.1.3 Mannila & De Raadt (2006) [37]

Mannila & De Raadt present a programming language comparison for introductory programming courses.
They provide a large list of language properties that the languages are scored on, such as ease of learning,
suitability for teaching and community support. They describe what is meant by all these properties,
and present scores for all these languages. However, it is not motivated what these scorings are based
on. The research also includes the results of a survey on the motivations of instructors for choosing their
language for introductory courses.

56

APPENDIX D. LITERATURE STUDY ON PROGRAMMING LANGUAGE COMPARISON

D.1.4 Ebcioglu et al. (2006) [38]

Ebcioglu et al. conducted a study with multiple students that participated in a multiple day training
event on parallel programming using MPI, UTC, and X10. The training concluded with an extensive
programming assignment, where the students’ programming productivity was measured. This was mea-
sured by keeping track of the amount of time needed to get to a correct solution to the problem. The
authors include a full report on the individual students’ solutions and processes, and include notes on
the correctness of their implementations.

D.1.5 Fourment & Gillings (2008), [39]

Fourment & Gillings focus on programming languages for bio-informatics use cases. For this they compare
C, C++, C#, Java, Perl, and Python for the execution of common applications in the bio-informatics
domain (sellers algorithm, neighbour-joining algorithm, and parsing BLAST file output [39]). In contrast
to the crowdsourced implementations of Prechelt [36], the authors created reference implementations for
these problems themselves in each of the languages.

They executed these implementations of the common problems and compared them on the following
metrics: execution time, memory usage, and program size in lines of code. They also compare these
metrics across between Windows (XP) and Linux (Fedora 7). The authors have varying levels of profi-
ciency in the tested languages, which causes varying levels of implementation quality across languages.
The authors also discuss language features, most importantly the size of standard libraries, platform
independence, and whether the languages are compiled, semi-compiled or interpreted.

D.1.6 Bissiyandé et al. (2013) [40]

Bissiyandé et al. look at a huge corpus of open source work available on GitHub. They compare the open
source repositories of thirty different commonly used languages. Using these repositories, they compare
the popularity of each language by looking at total lines of code, users and projects. They also measure
the inter-operability of these languages by looking at multi-language repositories to see which languages
are often used together. Finally they measure the success of the languages by looking at the amount of
watchers, forks, and issues for the projects that use these languages.

D.1.7 Nanz et al. (2013) [41]

Nanz et al. specifically focus on performance benchmarking of the multicore languages Chapel, Cilk,
TBB and Go in this work. The authors compare the languages by some of their features such as
communication and programming paradigm. Next up they hire an experienced developers to create
implementations of random number generation, histogram thresholding, weighted point selection, outer
products, matrix-vector products, and chaining of problems for each of the languages. They combine
this with code review by different experts for the respective languages to make sure the implementations
are of a certain quality. For all of the implementations they measure and compare the source code size,
development time, execution time, and speedup compared to a sequential version of the code.

D.1.8 Aruoba & Fernandez-Villaverde (2015) [42]

Aruoba & Fernandez-Villaverde research programming languages in the field of macroeconomics. They
compare C++14, Fortran 2008, Java, Julia, Python, Matlab, Mathematica and R. They present some
general information on these languages, including whether the languages are compiled or interpreted,
and their standard programming paradigm. They compare these languages using implementations of the
stochastic neoclassical growth model, which is a common algorithm in macroeconomics. They compare
the language on execution time and program size in lines of code. They also state that they would like
to measure code complexity and implementation time, although they state that they were unable to
compare these metrics in an objective way.

D.1.9 Nanz & Furia (2015) [43]

Nanz & Furia analyse the code inside the Rosetta Code repositories 1 to compare C, C#, F#, Go,
Haskell, Java, Python and Ruby. The authors downloaded, compiled (where neccesary) and ran a subset

1http://www.rosettacode.org/wiki/Rosetta_Code

57

http://www.rosettacode.org/wiki/Rosetta_Code

APPENDIX D. LITERATURE STUDY ON PROGRAMMING LANGUAGE COMPARISON

of these Rosetta Code problems that had solutions for all included languages. Not all of the solutions in
the repository were working correctly, and the authors explicitly did not correct mistakes in the code to
get an accurate view of the actual implementations in the repository. The authors then compared the
implementations on code size in lines od code, executable size in bytes, execution time, memory usage,
and correctness of the implementations.

D.2 Applicability to Bitcoin Script languages

D.2.1 Implementation-based metrics

Table D.2 shows the studies that work with implementation evaluations.
One of the most mentioned metrics is execution time. Bitcoin Script transactions are executed by

the Bitcoin network, meaning they do have some form of execution time. From a user’s perspective, this
execution time is irrelevant, as they have to wait for their transaction to be included into a block before
it is considered confirmed 2.

Another popular metric is the size of the written code, as this can relate to the maintainability,
expressiveness, and readability of the code. It can also be related to the efficiency of the language –
how many lines of code are needed for a certain implementation. These concepts can be carried over to
Bitcoin Script languages as well.

While this code size metric is quite widespread, the development time and coding productivity are
used less. It is used in all studies that deal with user-made – rather than author-made – implementations
tough, indicating that it is an important metric. An important objective of languages that compile to
Bitcoin Script is to make it easier to write scripts for Bitcoin, highlighting the increased importance of
this development time metric.

The executable size metric is disregarded in the reviewed studies, as it is mostly irrelevant on modern
hardware. In the context of Bitcoin transactions though, it is an important concept. Full scripts need
to be included in transactions that try to spend from the script addresses. Since Bitcoin transaction
fees are paid per byte, this directly causes higher costs. As discussed in chapter 4, there are limits in
place for the size and number of operations that a Bitcoin Script can contain, which places in increased
importance on the executable size metric.

Memory usage and compilation time are not extensively used in the reviewed studies. In general
purpose programming, compiling is a regular part of the development and deployment processes. With
Bitcoin Script, it is possible to test the scripts in a test environment before deployment, but once
deployed the code can not be changed. This means that compiling of code is a smaller part of Bitcoin
Script development than it is of other development. The memory usage and compilation time metrics
are not often included in the general purpose comparisons, and it is even less relevant for Bitcoin Script.
They can still be included for reference if it does not require too much effort.

Correctness of the solution is named in a small number of studies. This metric is used to measure
how difficult it is to reliably write a program with the expected output. This is extra important when
dealing with Bitcoin transactions, as Bitcoin Script can be used to potentially control large amounts of
funds.

D.2.2 Static metrics

Table D.3 shows the studies that consider static language features. We see a lot of different metrics
being used between these studies, so we only included metrics that were named more than once. Most
of these metrics are quite subjective and are measured in different ways in the different studies, making
it difficult to find homogeneity among the different works.

The metric that is mentioned most in the reviewed studies is the popularity or ecosystem metric.
This looks at the maturity of the surrounding ecosystem, the availability of specialised tooling, and the
overall usage rates of the language. This is relevant in the context of Bitcoin Script languages, but the
existing languages are very niche and young, making it difficult and less valuable to do such an analysis.
An overview of the tooling is included in chapter 3 though.

All Bitcoin Script languages are compiled to Bitcoin Script, while Bitcoin Script itself is interpreted.
This makes the compiled vs interpreted language irrelevant. The stateless nature of Bitcoin Script makes
these languages functional by definition, although their syntax might differ. Platform independence is
also irrelevant as there is no difference between the languages in that regard.

2Disregarding 0-confirmation transactions

58

APPENDIX D. LITERATURE STUDY ON PROGRAMMING LANGUAGE COMPARISON

The complexity and learning curve metrics are interesting in the case of Bitcoin Script language,
because these languages are focused on reducing the complexity and learning curve. However, the metrics
are very subjective and have no tried-and-true assessments, which makes them difficult to measure. This
diminishes the usefulness of such metrics.

Table D.1: Overview of the quality and contents of the studies.

C
it

at
io

n
C

ou
nt

3
C

on
fe

re
nc

e/
Jo

ur
na

l
R

at
in

g
4

C
ov

er
ed

L
an

gu
ag

es

E
va

lu
at

es
pr

og
ra

m
im

pl
em

en
ta

ti
on

s

E
va

lu
at

es
la

ng
ua

ge
fe

at
ur

es

In
cl

ud
es

us
er

in
pu

t

[35] 34 Q2
C++, Modula-3, Sather,

Oberon-2, Self
x - -

[36] 360 Q1
C, C++, Java, Perl,

Python, Rexx, Tcl
x - x

[37] 68 B

C, C++, Eiffel, Haskell, Java,

JavaScript, Logo, Pascal,

Python, Scheme, VB

- x x

[38] 46 N/A MPI, UTC, X10 x - x

[39] 88 Q1
C, C++, C#, Java,

Perl, Python
x x -

[40] 68 B 30 different languages - x -

[41] 36 A Chapel, Cilk, TBB, Go x x x

[42] 63 Q1
C++4, Fortran 2008, Java, Julia,

Python, Matlab, Mathematica, R
x x -

[43] 65 A
C, C#, F#, Go, Haskell,

Java, Python, Ruby
x - x

3Taken from Google Scholar
4Taken from http://www.conferenceranks.com/ and https://www.scimagojr.com/journalrank.php

59

http://www.conferenceranks.com/
https://www.scimagojr.com/journalrank.php

APPENDIX D. LITERATURE STUDY ON PROGRAMMING LANGUAGE COMPARISON

Table D.2: Overview of the metrics used in implementation evaluations.

P
ro

gr
am

s
w

ri
tt

en
by

R
el

ia
bi

lit
y

E
xe

cu
ti

on
ti

m
e

C
om

pi
la

ti
on

ti
m

e

M
em

or
y

us
ag

e
C

od
e

si
ze

E
xe

cu
ta

bl
e

si
ze

D
ev

el
op

m
en

t
ti

m
e

C
od

in
g

pr
od

uc
ti

vi
ty

[35] authors - x x - - x - -

[36] users x x - x x - x x

[38] users x - - - - - x x

[39] authors - x - x x - - -

[41] users - x - - x - x -

[42] authors - x - - x - - -

[43] public x x - x x x - -

Table D.3: Overview of the language features that were compared that are not based on
implementations. Only features that occur in more than one paper are included.

C
om

pi
le

d
vs

in
te

rp
re

te
d

P
ro

gr
am

m
in

g
pa

ra
di

gm

P
op

ul
ar

it
y

/
E

co
sy

st
em

P
la

tf
or

m
in

de
p
en

de
nc

e

C
om

pl
ex

it
y

L
ea

rn
in

g
cu

rv
e

[37] - - x x x x

[39] x x x x - x

[40] - - x - - -

[41] - x - - - -

[42] x x x - x -

60

	Introduction
	Research questions
	Contribution
	Outline

	Background
	Bitcoin
	Blockchain
	BTC & BCH
	Bitcoin transactions
	Bitcoin Script

	Compilers

	Related work
	Ivy
	BALZaC
	Spedn
	BitAuth Script
	Summary

	A high-level language for Bitcoin Cash Script
	Language design goals
	Bitcoin Script limitations
	Language specification
	Control structures
	Types
	Type casting
	Built-in functions
	Global variables
	Operators

	Artifacts
	Artifact specification

	Extensions

	A compiler for CashScript
	Compiler implementation
	Used tools
	Lexical & syntax analysis
	Semantic analysis
	Code generation
	Possible optimisations
	Test suite

	Command line tool
	JavaScript SDK implementation
	Contract
	Instance
	Transaction

	Evaluation
	Considered languages
	Metrics
	Setup & methods
	Contract implementation
	Contract integration
	Similarity to Ethereum's workflow

	Participants

	Results
	Overview of participants
	Contract implementation
	Contract integration
	Similarity to Ethereum's workflow

	Discussion
	Contract implementation
	Contract integration
	Similarity to Ethereum's workflow
	Threats to validity
	Conclusions
	Recommendations for further research

	References
	Acronyms
	Appendix Code repository
	Appendix CashScript grammar
	Appendix Evaluation Assignment
	Contract implementation
	Specification
	Documentation links
	Setup
	Reference Implementations

	Contract Integration
	Participants & data
	Repository structure & setup
	Specification
	Documentation links

	Appendix Literature study on programming language comparison
	Programming language comparison studies
	Henderson & Zorn (1994) henderson1994
	Prechelt (2000) prechelt2000
	Mannila & De Raadt (2006) mannila2006
	Ebcioglu et al. (2006) ebcioglu2006
	Fourment & Gillings (2008), fourment2008
	Bissiyandé et al. (2013) bissyande2013
	Nanz et al. (2013) nanz2013
	Aruoba & Fernandez-Villaverde (2015) aruoba2015
	Nanz & Furia (2015) nanz2015

	Applicability to Bitcoin Script languages
	Implementation-based metrics
	Static metrics

