(& TRUFFLECON 2020

VERIFYING SMART CONTRACT
SOURCE CODE ON ETHERSCAN

By Rosco Kalis

(& ABOUT ME

 Software Engineer @ General Protocols
» revoke.cash, CashScript

» truffle-assertions

» truffle-plugin-verity

(& CONTENTS

« Why verifying source code is important
 Traditional method for source code verification
e Setting up and using truffle-plugin-verify

» Technical details of truffle-plugin-verify

(@ WHY VERIFYING IS IMPORTANT

¢ 2

m Etherscan

&@ WHY VERIFYING IS IMPORTANT

m Read Contract Write Contract

@ Contract Source Code Verified (Exact Match)

Contract Name: SimpleToken Optimization Enabled:

Compiler Version v0.6.11+commit.5ef660b1 Other Settings:

[2) Contract Source Code (Solidity Standard Json-Input format)

File 1 of 6 : SimpleToken.sol

1 // SPDX-License-Identifier: MIT
2 pragma solidity A0.6.0;

3

4 import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
5

Gl /&

7 * @title SimpleToken

8 * @dev Very simple ERC20 Token example, where all tokens are pre-assigned to the creator.
9 * Note they can later distribute these tokens as they wish using ‘transfer’ and other

10 * 'ERC20° functions.

11 */

12 - contract SimpleToken is ERC20 {

13

14~ Vil

15 * @dev Constructor that gives msg.sender all of existing tokens.
16 7

17~ constructor () public ERC20("Simple Token", "SIM") {

18 _mint(msg.sender, 1000000 * (10 ** uint256(decimals())));

19 }

20 }

File 2 of 6 : Context.sol

1 // SPDX-License-Identifier: MIT

2

3 pragma solidity A0.6.0;
4

D /*

6 * @dev Provides information about the current execution context, including the
7 * sender of the transaction and its data. While these are generally available
8 * via msg.sender and msg.data, they should not be accessed in such a direct

9 manner, since when dealing with GSN meta-transactions the account sending and

*
10 * paying for execution may not be the actual sender (as far as an application
11 »

e At asststadS

No with 200 runs

default evmVersion

sonmes 1015

&@ WHY VERIFYING IS IMPORTANT

Code JEEGEOLLIEE Write Contract
[2) Read Contract Information [Reset]
1. allowance +v

owner (address)

owner (address) N}

spender (address)

spender (address) N

Query

uint256

2. balanceOf +

account (address)

account (address) N

Query

uint256
3. decimals +v
18 uint8
4. name +v

Simple Token string

E asvirnbval A

(@ WHY VERIFYING IS IMPORTANT

Contract Overview

More Info Y
Balance: 0 Ether My Name Tag: Not Available
Contract Creator: 0x16c1a94c8c027c011... at txn 0x4972ff57621e03d32...
Token Tracker: Simple Token (SIM)
Transactions Contract @ Events
IF Latest 1 Contract Event n
Tip: Logs are used by developers/external Ul providers for keeping track of contract actions and for auditing
Txn Hash Method = Logs
0x497f2f57621e03d32... 0x60806040 > Transfer (index_topic_1 address from, index_topic_2 address to, uint256 value)
#7453811 Y

topic0] 0xddf252adlbe2c89b69c2b068fc378daa952ba7f163c4al1628f55a4df523b3ef ¥
16 mins ago [topicl] 0x00
[topic2] 0x00000000000000000000000016c1la94c8c027c011a4097d24d£55893c£b5d268

flox v 3 00d3c21bceccedal000000

(@ WHY VERIFYING IS IMPORTANT

‘= Contract ABI

a

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous": false,"inputs": [{"indexed":true,"internalType":"address","name":"owner","type":"address"},
{"indexed":true,"internalType":"address","name":"spender","type":"address"},
{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}], " name":"Approval”,"type":"event"},{"anonymous": false,"inputs":
[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed": true,"internalType":"address","name":"to","type":"address"},
{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":
[{"internalType":"address", " name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":
[{"internalType":"uint256","name":"" uint256"}],"stateMutability":"view","type":"function"}, {"inputs": [{"internalType":"address","name":"spender","type":"address"},
{"internalType":"uint256","name" type":"uint256"}],"name":"approve","outputs":
[{"internalType":"bool","name": = nonpayable","type":"function"},{"inputs":
'balance0f","outputs":
uint256"}],"stateMutability":"view","type":"function"},{"inputs": [],"name":"decimals","outputs":
:"uint8"}],"stateMutability":"view","type":"function"}, {"inputs": [{"internalType":"address","name":"spender","type":"address"},
subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":
"type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs": [{"internalType":"address","name":"spender","type":"address"},
addedvalue","type":"uint256"}],"name":"increaseAllowance","outputs":
,"type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs": [],"name":"
"type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name"
[{"internalType":"string","name' string"}],"stateMutability":"view","type":"function"}, {"inputs":[],"name":
[{"internalType":"uint256","name": "type":"uint256"}],"stateMutability":"view","type":"function"}, {"inputs":
[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}], " name":"transfer","outputs":
[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs": [{"internalType":"address","name":"sender","type":"address"},
{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}], "name":"transferFrom","outputs":
[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}] y/

[{"internalType":"uint256", " name
[{"internalType":"uint8","name"
{"internalType":"uint256", " name"
[{"internalType":"bool","name":
{"internalType":"uint256","name"
[{"internalType":"bool","name":
[{"internalType":"string","name"

name","outputs":
'symbol","outputs":

‘totalSupply","outputs":

</> Contract Creation Code

60806040523480156200001157600080fd5b506040518060400160405280600c81526020017f53696d706c6520546f6b656 15250604051806040016040528060038
1526020017153494 1525081600390805190602001906200009692919062000383565b508060049080519060200190620000a1929190620003
83565b506012600560006101000a8154816011021916908360111602179055505050620000123362000036200010060201b60201c565b60ff1660020262074240026200011760201b60201c565b62000432565b60006
00560009054906101000a9004601f16905090565b6000 7 3 F fffffffffffffffffffffffffffffffffffffffle8273ff161415620001bb576040517f08c379a000000000
15260040180806020018281038252601181526020018071455243323032206d696e742074612074686520726572612061646472657373008152506020019
1505060405180910390fd5b620001cf600083836200021560201b60201c565b620001eb81600254620002fa60201b620009ad1790919060201c565b60028190555062000249816000808573ffffffffffffffffffffff
fEffffffffffffffffle73ff16815260200190815260200160002054620002fa60201b620009ad1790919060201c565b6000808473fffffffffffffffffffffffffffff
e fffffffle73ff168152602001908152602001600020819055508173ffl6600073ffffffffffffffffffffffffffff
fIFfffffffff167fddf252ad1be2c89b69c2b068fc378daad52ba7f163c4a11628f55a4df523b3ef836040518082815260200191505060405180910390a35050565b505050565b6000808284019050838110156200037
9576040517108c37 152600401 20018281038252601b8152602001807f536166654d6174683220616464697469616€206f766572666¢
6177000000000081525060200191505060405180910390fd5b8091505092915050565b828054600181600116156101000203166002900490600052602060002090601016020900481019282601110620003C65780516 /7

Q@ THE TRADITIONAL METHOD FOR VERIFICATION

DEPLOY & RUN TRANSACTIONS @ & & ®fome SimpleToken.sol

1 pragma solidity /A0.6.0;
2
ENVIRONMENT 3
Injected Web3 A 3 f;f' ji SPDX-License-Identifier: MIT
Main (1) 6 * @dev Provides information about the current execution context, including the
7 * sender of the transaction and its data. While these are generally available
v ACCOUNT © 8 * via msg.sender and msg.data, they should not be accessed in such a direct
9 * manner, since when dealing with GSN meta-transactions the account sending and
Oxel2..3652a (4.53716489928719 ¢ (€ 10 * paying for execution may not be the actual sender (as far as an application
11 * is concerned).
GAS LIMIT 12 *
13 * This contract is only required for intermediate, library-like contracts.
3000000 . 14 */
15 v abstract contract Context {
VALUE 16 v function _msgSender() internal view virtual returns (address payable) {
. 17 return msg.sender;
0 wei = 18 }
19
CONTRACT 20 v function _msgData() internal view virtual returns (bytes memory) {
21 this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
SimpleToken - browser/SimpleToken.s> i Z } return msg.data;
24 }

= ?s
26v /**

~ . .
v| Publish to IPES 27 @dev Interface of the ERC20 standard as defined in the EIP.

28 »7
OR 29 v interface IERC20 {
30~ /**
- . .
T Y ;; ‘/‘ dev Returns the amount of tokens in existence.
33 function totalSupply() external view returns (uint256);
Transactions recorded '@ v 34
35« /A
Deployed Contracts 0} 36 * @dev Returns the amount of tokens owned by ‘account.
37 */
38 function balanceOf(address account) external view returns (uint256);
39
Currently you have no contract instances 40 v S
to interact with. 41 @dev Moves ‘amount’ tokens from the caller's account to ‘recipient’.

*

*

* Returns a boolean value indicating whether the operation succeeded.
44 *

* Emits a {Transfer} event.

*x /

(@ THE TRADITIONAL METHOD FOR VERIFICATION

1. If the contract compiles correctly at REMIX, it should also compile correctly here.
2. We have limited support for verifying contracts created by another contract and there is a timeout of up to 45 seconds for each contract compiled.

3. For programatic contract verification, check out the Contract API Endpoint

Contract Address Compiler Optimization

0x2fed370C5E3b5a9Cb14859e81d6213C187DFD8ff No

O
O

Enter the Solidity Contract Code below * ©) Fetch from Gist

*/
contract SimpleToken is ERC20 {
/o
* @dev Constructor that gives msg.sender all of existing tokens.
*/
constructor () public ERC20("Simple Token", "SIM") {
_mint(msg.sender, 1000000 * (10 ** uint256(decimals()));

Constructor Arguments ABI-encoded (for contracts that were created with constructor parameters)

Contract Library Address (for contracts that use libraries, supports up to 10 libraries)

Misc Settings (Runs, EvmVersion & License Type settings) v

») Runs (Optimizer) ?) EVM Version to target LicenseType ©

200 default (compiler defaults) = 3) MIT License (MIT)

O

(@ THE TRADITIONAL METHOD FOR VERIFICATION

(@ THE TRADITIONAL METHOD FOR VERIFICATION

Search SEARCH
— Migrations are JavaScgat files that help you deploy contracts to the Ethereum pgwork. These files are responsible for staging your deployment tasks, and they're

written under the g that your deployment needs will change ovg your project evolves, you'll create new migration scripts to further this
(i }‘ TRUFFLE TEAMS evolution on the istory of previously run migrations is pin through a special Migrations contract, detailed below.

k@ TRUFFLE

To run your m§

Overview
Quickstart

$ truffle migrate
GETTING STARTED
Installation This will run all migrations Ig ory. At their simplest, migrations are simply a set of managed deployment scripts. If your
Creating a Project migrations were previg ion from the last migration that was run, running only newly created migrations. If
Compiling Contracts no new migration 0 use the --reset option to run all your migrations from the beginning. Other
Running Migrations command op chain such as Ganache configured and running before executing truffle

Interacting with Your Contracts
Truffle with MetaMask
Package Management via EthPM

migrate .

Package Management via NPM
Debugging Your Contracts

Using Truffle Develop and The Console A simple migration
Writing External Scripts

Filename: 4_example_migration.js

TESTING
Testing Your Contracts MyContract = artifacts.require("MyContract");

|

Writing Tests in JavaScript

Writing Tests in Solidity R

(deployer) {

DISTRIBUTED LEDGER SUPPORT deployer.deploy(MyContract);
Working With Quorum b

(& TRUFFLE-PLUGIN-VERIFY

& rkalis / truffle-plugin-verify sponsor @Watch 2 Yrstar 92 Y Fork 14
<> Code Issues 7 i’} Pull requests Actions Security [~ Insights
¥ master ~ ¥ 2 branches © 24 tags Q v - About
Verify your deployed smart
e rkalis Bump version to 0.5.0 9471050 3 days ago V) 77 commits -3~ contracts on Etherscan from the
Truffle CLI

@ kalis.me/verify-truffle-smart-contra...

trUfer-plugin-verify truffle etherscan ethereum

web3 solidity

W downloads 6.8k/month m

This truffle plugin allows you to automatically verify your smart contracts' source code on Etherscan, straight from
the Truffle CLI.

&8 MIT License

B 1yearold

| wrote a tutorial on my website that goes through the entire process of installing and using this plugin:

Automatically verify Truffle smart contracts on Etherscan. Releases 24

© v0.5.0 (Latestj‘

Note: This version of the plugin uses multi-file verification. If you want to use source code flattening instead for o
ays ago

any reason, please use the legacy version (v0.4.x) of the plugin.

+ 23 releases

Installation / preparation

1. Install the plugin with npm or yarn Sponsor this project
npm install -D truffle-plugin-verify e rkalis Rosco Kalis V)
yarn add -D truffle-plugin-verify

& gitcoin.co/grants/259/rosco-kalis

(& INSTALLATION & SETUP

1. Install the plugin with npm or yarn

npm install -D truffle-plugin-verify
yarn add -D truffle-plugin-verify

2. Add the plugin to your truffle-config.js file

module.exports = {

plugins: [
"truffle-plugin-verify'
]
}

(& INSTALLATION & SETUP

© My Profile My API Keys h

¥ Watch List
1 used (Out of 3 max quota) 1

(@ Txn Private Notes

Action Api-Key Token Created
[Address Private Notes

‘ Edit || il Stat ‘ 2019-03-19
= Token Ignore List e AppName: Test Key

R «—

€@ Verified Addresses

Please contact us if you would like to upgrade your API Plan.

= Custom ABIs

i Api-Key?

For developers interested in building
applications using our API Service, please
create an Api-Key Token which you can then

use with all your api requests.

(& INSTALLATION & SETUP

3. Add your Etherscan API key to your truffle config (make sure to use something like dotenv so you don't commit the api key)

module.exports = {

api_keys: {
etherscan: "MY_API_KEY'
}
}

&@ RUNNING VERIFICATION

1. Compile & deploy contracts

truffle compile
truffle migrate --network rinkeby

2. Verify deployed contract

truffle run verify SimpleToken --network rinkeby

2. (Alternatively) Verify deployed contract with custom address

truffle run verify SimpleToken@dx2fed370C5E3b5a9(Cb14859e81d6213C187DFD8ff --network rinkeby

3. Enjoy your verified contract

> Pass - Verified: https://rinkeby.etherscan.io/address/0x2fed370C5E3b5a9Cb14859e81d6213C187DFD8ff#contracts

(@ RUNNING VERIFICATION

m Read Contract Write Contract

@ Contract Source Code Verified (Exact Match)

Contract Name: SimpleToken Optimization Enabled:

Compiler Version v0.6.11+commit.5ef660b1 Other Settings:

[2) Contract Source Code (Solidity Standard Json-Input format)

File 1 of 6 : SimpleToken.sol

1 // SPDX-License-Identifier: MIT
2 pragma solidity A0.6.0;
3

4 import "@openzeppelin/contracts/token/ERC20/ERC20.sol";

5

6 v /t‘

7 * @title SimpleToken

8 * @dev Very simple ERC20 Token example, where all tokens are pre-assigned to the creator.
9 * Note they can later distribute these tokens as they wish using ‘transfer’ and other

10 * 'ERC20° functions.

11 */

12 ~ contract SimpleToken is ERC20 {

13

14~ Vil

15 * @dev Constructor that gives msg.sender all of existing tokens.
16 7

17~ constructor () public ERC20("Simple Token", "SIM") {

18 _mint(msg.sender, 1000000 * (10 ** uint256(decimals())));

19 }

20 }

File 2 of 6 : Context.sol

1 // SPDX-License-Identifier: MIT

2

3 pragma solidity A0.6.0;
4

D /*

6 * @dev Provides information about the current execution context, including the
7 * sender of the transaction and its data. While these are generally available
8 * via msg.sender and msg.data, they should not be accessed in such a direct

9 manner, since when dealing with GSN meta-transactions the account sending and

*
10 * paying for execution may not be the actual sender (as far as an application
11 »

e At asststadS

No with 200 runs

default evmVersion

sonmes 1015

(& TECHNICAL DETAILS

 Extract config information

networkId = config.network_id
apilrl = [networkId]
enforce(apilrl, “Etherscan has no support for network ${config.network} with id ${networklId} , logger)

apiKey = config.api_keys && config.api_keys.etherscan
enforce(apiKey, 'No Etherscan API key specified', logger)

workingDir = config.working_directory
contractsBuildDir = config.contracts_build_directory

enforce(config._.length > 1, '"No contract name(s) specified', logger)
contractNames = config._.slice(l)

(& TECHNICAL DETAILS

e Extract & format data from artifact
e Retrieve constructor data from Etherscan

artifactPath = path.resolve(options.contractsBuildDir, "“${contractName}.json’)
artifact = require(artifactPath)

inputJSON = fetchInput]JSON(Cartifact, options)
constructorArgs = fetchConstructorArgs(artifact, options)

(& TECHNICAL DETAILS

* Build & send Etherscan verification request

postQueries =
apikey: options.apiKey,
module: 'contract’,
action: 'verifysourcecode',
contractaddress: artifact.networks[${options.networkId} 7].address,
sourceCode: .stringify(inputJSON),
codeformat: 'solidity-standard-json-input’',
contractname: "“${artifact.sourcePath}:${artifact.contractName}",
compilerversion: “v${artifact.compiler.version.replace('.Emscripten.clang', "')}°,
constructorArguements: encodedConstructorArgs

guid = axios.post(options.apilrl, querystring.stringify(postQueries))

(& TECHNICAL DETAILS

e Retrieve verification result

() {
delay()

gs = querystring.stringify({
apiKey: options.apiKey,
module: 'contract',
action: 'checkverifystatus',
guid

verificationResult = axios.get(${options.apilrl}?${qgs})
(verificationResult.data.result !== VerificationStatus.) {
verificationResult.data.result

(& HAPPY VERIFYING

$ truffle run verify SimpleToken --network rinkeby

Verifying SimpleToken

Pass - Verified: https://rinkeby.etherscan.io/address/0x7Eaf86d770FAd2d495E7923555a1553DEAC6B172#contracts
Successfully verified 1 contract(s).

(& FURTHER READING

* https://kalis.me/verity-truffle-smart-contracts-etherscan/
e https://github.com/rkalis/truffle-plugin-verify
* https://kalis.me/uploads/trufflecon2020.pdf

https://kalis.me/verify-truffle-smart-contracts-etherscan/
https://github.com/rkalis/truffle-plugin-verify
https://kalis.me/uploads/trufflecon2020.pdf

